
Real-Time Radon Transform
via the GPU Graphics Pipeline

Christian B. Mendl

Abstract

Graphics processing units (GPUs) found in consumer hardware have emerged as first choice for
computational-intensive image processing tasks, e.g., real-time computer tomography (CT) reconstruction.
However, the GPU programming paradigm is rather intricate. To leverage the potential of GPUs for a broad
audience, this paper is concerned with a self-contained, pedagogical implementation of the prototypical for-
ward and inverse Radon transform. The full source code is available for download. Instead of utilizing the
GPU merely as multiprocessor, the algorithm explicitly employs the graphics pipeline to take advantage of
the dedicated GPU hardware components.

1. Introduction

Interactive computer tomographic (CT) imaging
techniques in medical and physical sciences have
recently become the focus of active research, for
example, to enable assistance during surgery [1],
for monitoring, or in (closed-loop) feedback ex-
periments. The associated real-time data process-
ing tasks can profit considerably from the broad
availability and exponential performance growth of
consumer graphics processing units (GPUs) [2, 3].
However, the GPU programming paradigm is still
rather intricate as compared to traditional CPU
implementations. To render this topic accessible
to a broad audience, this paper provides a self-
contained, pedagogical implementation of the pro-
totypical forward and inverse Radon transform [4,
5] on GPUs. The full source code is available for
download [6] and includes a real-time demonstra-
tion program.

The paper is organized as follows. Section 2 ex-
plains the theoretical background and contains a
detailed description of our algorithmic implementa-
tion for both the forward and inverse Radon trans-
form. We evaluate the performance of our program
in section 3 and estimate the GPU speedup as com-
pared to a fast CPU. Finally, section 4 draws con-
cluding remarks.

Email address: christian_mendl@hotmail.com

(Christian B. Mendl)

2. Implementation

This section contains the technical description of
our implementation. It is subdivided into the for-
ward and inverse Radon transform, which can be
handled independently. In each subsection, we first
state the well-known classical theory [4, 7, 5] and es-
tablish our notation, and then explain the mapping
to the graphics pipeline of modern GPUs. There,
the only essential hardware requirement is support
for floating point arithmetic.

2.1. Forward Radon transform

The forward Radon transform R of a continuous
function f : R2 → R with bounded support may be
defined by the line integral

(Rf)(θ, t) :=

∫
n̂θ·x=t

f(x) dm(x), θ ∈ [0, 2π), t ∈ R

(1)
with n̂θ := (cos θ, sin θ) and the 1-dimensional “hy-
perplane” measure dm. In other words, the line
contains the point t n̂θ and is perpendicular to n̂θ.
Figuratively, R describes a set of parallel projec-
tions of f at a certain angle θ, as illustrated in
Fig. 1.

The implementation we present here is a direct
mapping of (1) to the graphics pipeline of modern
GPUs, as illustrated in Fig. 2. The discretized ver-
sion of f is an image or “texture”, which we assume

Preprint submitted to Computer Methods and Programs in Biomedicine October 27, 2010

Figure 1: Parallel projections of an image f : R2 → R, for
an angle θ.

to be square for simplicity of presentation. Denote
its width and height by h. Furthermore, we have
to discretize the rotation angle θ, i.e.,

θi :=
i

mθ
π, i = 0, 1, . . . ,mθ − 1 (2)

with some fixed integer mθ > 0. To accommodate
all parallel projections of the input texture for any
rotation angle requires line segments of length

√
2h.

Thus, the output texture of the algorithm has di-
mensions

⌈√
2h
⌉
×mθ, with row i corresponding to

rotation angle θi. To register this texture as output
of the graphics processing stages, we set it as render
target of the GPU.

Our algorithm consists of the following steps: Al-
locate a vertex buffer containing

⌈√
2h
⌉

“screen
quads”, i.e., pairs of triangles which form a rect-
angle. The vertex position coordinates are chosen
such that each quad precisely covers the render tar-
get texture. Additionally, each vertex contains tex-
ture coordinates (tex.x, tex.y). These are used by
the pixel shader to calculate the sampling coordi-
nates (u, v) for the input texture, as follows:(
u
v

)
:=

(
cos θi sin θi
− sin θi cos θi

)(
tex.x− 0.5
tex.y − 0.5

)
+

(
0.5
0.5

)
.

The addition/subtraction of 0.5 shifts the rotation
fixpoint to the center of the texture. The index i is
equal to the y-coordinate of the current render tar-
get pixel, and is thus available to the pixel shader.

To obtain the projection line integrals, we assign
the same tex.y coordinate to the four vertices form-
ing a single screen quad, such that the collection of

all screen quads samples the projection lines. More
precisely, for all four vertices of screen quad k,

tex.y :=
k⌈√
2h
⌉ , k = 0, 1, . . . ,

⌈√
2h
⌉
− 1.

Then, the projection line integrals are effectively
calculated by “blending” all screen quads together.
In terms of graphics programming, this is effected
by the ADD blendstate.

2.2. Inverse Radon transform

First, we briefly recall the the theoretical back-
ground [4, 7, 5]. In what follows, Fn denotes the
Fourier transform in n dimensions. We treat θ as
fixed parameter for now and set Pθ(t) := (Rf)(θ, t).
Then, the so-called “Fourier slice theorem” may be
derived as follows. Let

Sθ(ω) :=
√

2πF1Pθ =

∞∫
−∞

∫
n̂θ·x=t

f(x) dm(x) e−iωt dt

=

∫∫
R2

f(x) e−iωn̂θ·x d2x = 2π(F2f)(ωn̂θ).

(3)

That is, the 1-dimensional Fourier transform of Pθ
yields the 2-dimensional Fourier transform of f .

Thus, applying the inverse Fourier transform re-
covers f . Using polar coordinates, we obtain

f(y) =
1

(2π)2

2π∫
0

∞∫
0

Sθ(ω) eiωn̂θ·yω dω dθ

=
1

(2π)2

π∫
0

∞∫
−∞

Sθ(ω) eiωn̂θ·y |ω| dω dθ,

where we have used that Sθ+π(−ω) = Sθ(ω). Defin-
ing

Qθ(t) :=
1

2π

∞∫
−∞

Sθ(ω) |ω| eiωt dω, (4)

i.e., the 1-dimensional inverse Fourier transform of
Sθ(ω) |ω| up to a constant prefactor, we thus obtain

f(y) =
1

2π

π∫
0

Qθ(n̂θ · y) dθ. (5)

This is precisely the backprojection algorithm.
Note that for fixed θ, the contribution to the recon-
structed image is constant along each line n̂θ · y =
const.

2

Figure 2: Illustration of the “rotated projections” rendering
pass, which yields the forward Radon transform of the input
texture using a single draw call. The highlighted rotated
bar depicts a projection line along the input texture. The
sampling of the texels within the bar (blue) is performed by
“screen quads”. Summing these texel values up is effectively
implemented by the “ADD” blend state. Note that all four
vertices forming a screen quad have the same tex.y coordi-
nate. The rotation angle θ depends on the y-position of the
current render target pixel.

Directly from the definitions in (3) and (4), we
may write Qθ concisely as

Qθ = F−11 ((F1Pθ) (ω) |ω|) . (6)

In other words, Qθ is a frequency domain filtering
operation applied to Pθ, with filter |ω|.

The graphics pipeline has to carry out this filter-
ing operation for each row of the output texture in
Fig. 2, which serves as input to the inverse Radon
transform algorithm. Zero-padding the rows to a
power of 2 is required to prevent spatial domain
aliasing, and also to speed up the FFT. We will not
go into details here since there already exist FFT
implementations specifically designed for graphics
cards, i.e., the CuFFT [8] library. However, for
demonstration purposes we have implemented the
Cooley-Tukey FFT algorithm [9] in the provided
source code.

In what follows, we show how the backprojec-
tion operation in (5) can be mapped to the graphics
pipeline, as illustrated in Fig. 3. The input texture
has the same structure as the output of the forward
transform since the filtering operation (6) does not
change dimensions. That is, row i corresponds to
rotation angle θi defined in (2). Backprojecting can
be visualized as “smearing” the highlighted blue
bar in Fig. 3 over the reconstruction plane, which is
schematically indicated by the grayscale pixel lines.
We employ a collection of mθ rotated squares or
“screen quads” such that all four vertices forming
quad i have the same tex.y texture coordinate,

tex.y :=
i

mθ
=
θi
π
, i = 0, 1, . . . ,mθ − 1.

This quad is rotated by θi in accordance with (5).

3. Results

The following table summarizes the running
times for a 256 × 256 input image and mθ = 180
rotation angles on a NVIDIA GeForce GTS 250
graphics card with 512 MB internal video memory:

forward (256× 256 pixels) 3.7 ms
inverse (1024×180 pixels FFT filtering,
363× 180 pixels backprojection)

9.7 ms

The overall system configuration consists of an In-
tel Core i7 CPU 920 running at 2.67 GHz (8 cores),
6 GB RAM, Windows 7 64-bit version with Di-
rectX 11. For comparison, we have run the same
program on the CPU only (DirectX 11 WRAP de-
vice) and obtained 112 ms for the forward and
71 ms for the inverse transform. Note that DirectX
actually employs all 8 CPU cores simultaneously.
Rather surprisingly, the CPU takes longer for the

3

Figure 3: Illustration of the backprojection implementation
using rotated screen quads. Each quad corresponds to a
fixed angle θ. Sampling the corresponding row in the input
texture is effected via the tex.y texture coordinate, which
has the same value for all four vertices within a quad.

forward than for the inverse transform. From the
results, the GPU speedup factor equals 30 and 7.2,
respectively. Note that we have not even employed
the latest GeForce graphics card series (GeForce
GTX 480 at the time of writing), or one of the
NVIDIA Tesla computing processors. These would
presumably lead to an even higher speedup factor.

Fig. 4 shows a screenshot of the demonstration
program, which computes and visualizes the for-
ward and inverse Radon transform in real-time.
The output texture of the forward transform has di-
mensions

⌈√
2h
⌉
×mθ = 363× 180 and is shown in

the middle (rotated by 90◦). As mentioned above,
the filtering operation for the inverse transform re-
quires zero-padding. Our implementation extends
the width from 363 to 1024; thus, a forward and
inverse 1-dimensional FFT of length 1024 has to be
carried out 180 times.

4. Conclusion

As expected, the GPU implementation leads to
a significant performance speedup as compared to

modern CPUs, since graphics cards are specifi-
cally designed for texture operations like the Radon
transform. Our contribution here is a detailed, ped-
agogical description of how to map the theoreti-
cal framework to the graphics pipeline. It is worth
mentioning that except for the Fourier transform, it
suffices to employ “classical” rendering techniques
using vertex and pixel shaders. This provides ad-
ditional benefits, like, for example, linear texture
filtering, which is readily available in hardware.

[1] P. M. Novotny, J. A. Stoll, N. V. Vasilyev, P. J. del Nido,
P. E. Dupont, T. E. Zickler, R. D. Howe, GPU based
real-time instrument tracking with three-dimensional ul-
trasound, Medical Image Analysis 11 (5) (2007) 458 –
464. doi:10.1016/j.media.2007.06.009.

[2] F. Xu, K. Müller, Real-Time 3D Computed Tomographic
Reconstruction Using Commodity Graphics Hardware,
Physics in Medicine and Biology 52 (2007) 3405 – 3419.

[3] N. Neophytou, F. Xu, K. Müller, Hardware acceleration
vs. algorithmic acceleration: Can GPU-based process-
ing beat complexity optimization for CT?, SPIE Medical
Imaging 6510 (2007) 65105F.

[4] J. Radon, Über die Bestimmung von Funktionen durch
ihre Integralwerte längs gewisser Mannigfaltigkeiten,
Sächsische Akademie der Wissenschaften, Leipzig 69
(1917) 262 – 277.

[5] A. C. Kak, M. Slaney, Principles of Computerized To-
mographic Imaging, IEEE Press, 1988.

[6] C. B. Mendl, Forward and inverse Radon transform
demonstration program (October 2010).
URL http://christian.mendl.net/software/iradon.

zip

[7] J. Radon, P. Parks, On the Determination of Func-
tions from Their Integral Values along Certain Mani-
folds, IEEE Transactions on Medical Imaging 5 (1986)
170 – 176.

[8] NVIDIA, CuFFT Library (August 2010).
URL http://developer.nvidia.com/object/

gpucomputing.html

[9] J. W. Cooley, J. W. Tukey, An Algorithm for the Ma-
chine Calculation of Complex Fourier Series, Mathemat-
ics of Computation 19 (1965) 297 – 301.

4

http://dx.doi.org/10.1016/j.media.2007.06.009
http://christian.mendl.net/software/iradon.zip
http://christian.mendl.net/software/iradon.zip
http://christian.mendl.net/software/iradon.zip
http://christian.mendl.net/software/iradon.zip
http://developer.nvidia.com/object/gpucomputing.html
http://developer.nvidia.com/object/gpucomputing.html
http://developer.nvidia.com/object/gpucomputing.html

Figure 4: Screenshot of the animated forward and inverse Radon transform demonstration program, showing the Shepp-Logan
phantom. Note that all computations are performed in real-time. The image in the middle shows the calculated forward
transform and serves as input to the inverse transform. On the right is the reconstructed image after filtering (not shown) and
backprojection.

5

	Introduction
	Implementation
	Forward Radon transform
	Inverse Radon transform

	Results
	Conclusion

