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Chapter 1

Introduction

Many-particle quantum mechanics gives – in its natural setting – rise to a Hamil-
tonian H which contains only single- and two-particle interactions (e.g., the
Coulomb repulsion of electrons), although the number N of particles may be
arbitrarily large. Consequently, the static energy of the system is completely de-
termined by the two-body reduced density matrix (RDM) of theN -particle wave-
function Ψ (i.e., an N -representable density matrix). In mathematical terms,

〈Ψ |HΨ〉 = tr [hΓΨ] , (1.1)

where h describes the two-body interaction and ΓΨ is the two-body reduced
density matrix of Ψ. In case of fermions, the Pauli exclusion principle states
that the total wavefunction must be antisymmetric – a key property contributing
significantly to the degree of difficulty. Nevertheless, equation (1.1) states that
the ground state of the system can be found by solving a linear programming
problem on the set of N -representable two-body density matrices instead of
a quadratic minimization problem on the full N -particle wavefunctions. This
may open a door to escape the "curse of dimensionality" and motivates the
N -representability problem:

Give a "practical" characterization of the set of two-body reduced density
matrices which are N -representable.

Although reduced density matrices were extensively studied already fifty
years ago by, for example, Yang (1962), Coleman (1963) and Löwdin (1955),
new results have been obtained only very recently by Ruskai (2007) and Liu
et al. (2007), who study the N -representability problem from a complexity class
perspective, and Mazziotti (2007), who uses two-body reduced density matri-
ces as key tool for the numeric solution of physical problems. Nevertheless,
a complete analytic picture of the N -representability problem in the light of
physically-motivated applications to, e.g., high-temperature superconductors,
is still missing.

This work takes two approaches. In chapter 3, properties of fermionic re-
duced density matrices are investigated on a fairly abstract level, including a
detailed analysis of one-body reduced density matrices (sections 3.3 and 3.4),
the explicit determination of the two-body RDM eigenvalues for low dimensions
(section 3.5) and pair structure inheritance (section 3.6).

In the second part of the thesis, we extend very recent work by Friesecke and
Goddard (2008b,a) on the (non-relativistic, Born-Oppenheimer) many-particle
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Schrödinger equation for atomic hull electrons in second-period atoms. The key
lines of thought are as follows. Perturbation theory allows to project the full
Schrödinger equation onto a finite-dimensional subspace of L2 wavefunctions
spanned by (dilated) Hydrogen orbitals. Most importantly, the well-known fact
that the total angular momentum, spin and parity operators commute with the
Hamiltonian still holds on the subspace which is invariant under these oper-
ators. Consequently, in order to block-diagonalize the Hamiltonian, one cal-
culates the simultaneous eigenspaces of angular momentum, spin and parity,
which is basically an algebraic problem independent of the Hamiltonian. The
contribution of this thesis is as follows. Starting from ab initio calculations, we
investigate the 3d vs. 4s orbital occupation in potassium, calcium and the tran-
sition metals scandium to zinc – which cannot be explained comprehensibly by
semi-empirical chemists’ models. To this end, we develop a symbolic computa-
tion pipeline automating the second-period calculations, since computation "by
hand" becomes infeasible for higher dimensions. These efforts have resulted in
an effective Coulomb integral solver using the computer algebra system Math-
ematica, and the Matlab toolbox FermiFab, which handles the fermionic RDM
index mapping, incorporates the symbolic Coulomb integrals, performs numeric
optimization and converts the results into human-readable form.

2
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Chapter 2

Basic Concepts

We always assume that H is a finite-dimensional or separable Hilbert space.
By ∧NH we denote the antisymmetrized N -fold tensor product (see Standard
Example 27 in the appendix).

Definition 1. Let Ψ ∈ ∧NH, ‖Ψ‖ = 1, then its p-body reduced density matrix
γpΨ (1 ≤ p ≤ N) is a linear continuous operator ∧pH → ∧pH given by

〈χ | γpΨϕ〉 := 〈aϕΨ | aχΨ〉 =
〈
Ψ | a†ϕaχΨ

〉
∀ϕ, χ ∈ ∧pH,

where a†ϕ and aχ are the creation and annihilation operators of the states ϕ and
χ, respectively. We denote the one- and two-body density matrices by γΨ := γ1

Ψ

and ΓΨ := γ2
Ψ.

The integral version of the creation and annihilation operators for L2 spaces
(given in the appendix) allows us to identify γpΨ as an integral operator: for all
ϕ ∈ ∧pH,

(γpΨϕ) (x1, . . . , xp) =
∫

Ωp
γpΨ(x1, . . . , xp, x

′
1, . . . , x

′
p)ϕ(x′1, . . . , x

′
p) dx′1 . . . dx′p

with the integral kernel (also denoted by γpΨ)

γpΨ(x1, . . . , xp,x
′
1, . . . , x

′
p) :=(

N

p

)∫
ΩN−p

Ψ(x1, . . . , xp, xp+1, . . . , xN )

×Ψ(x′1, . . . , x′p, xp+1, . . . , xN ) dxp+1 . . . dxN .

Thus we can state the following

Theorem 2. γpΨ is compact, self-adjoint, nonnegative, trace class and has trace

tr γpΨ =
∫

Ωp
γpΨ(x1, . . . , xp, x1, . . . , xp) dx1 . . . dxp =

(
N

p

)
.

Proof. γpΨ is positive semidefinite as

〈ϕ | γpΨϕ〉 = ‖aϕΨ‖2 ≥ 0 ∀ϕ ∈ ∧pH.

The other assertions follow from the properties of integral operators given in
the appendix.
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Assuming that the linear, self-adjoint Schrödinger operator H contains only
one- and two-body interactions, it can be rewritten as

H =
∑
α<β

hα,β

for some h : ∧2H → ∧2H. Given a complete orthonormal system (ϕi)i in ∧2H,
in terms of Second Quantization,

H =
∑
i,j

〈ϕi |hϕj〉 a†ϕiaϕj .

Now we gain equation (1.1): for all normalized Ψ ∈ ∧NH,

〈Ψ |HΨ〉 =
∑
i,j

〈ϕi |hϕj〉
〈
Ψ | a†ϕiaϕjΨ

〉
=
∑
i,j

〈ϕi |hϕj〉 〈ϕj |ΓΨϕi〉

=
∑
i

〈ϕi |hΓΨϕi〉 = tr [hΓΨ] .

An immediate consequence is the following formula for the ground state energy:

Proposition 3. Let H be given as above, then

inf specH = inf
{
〈Ψ |HΨ〉 : Ψ ∈ ∧NH, ‖Ψ‖ = 1

}
= inf

{
tr [hΓΨ] : Ψ ∈ ∧NH, ‖Ψ‖ = 1

}
,

i.e. the ground state energy can be found by minimizing over the set of N -
representable two-body density matrices.

Note that for the minimization problem, it is sufficient to characterize the
set

conv {ΓΨ : Ψ ∈ ∧NH, ‖Ψ‖ = 1}
‖·‖tr .

To illustrate the complexity reduction, let K := dimH < ∞ and compare
the degrees of freedom:

ΓΨ ∈ B
(
∧2H

)
' C(K2 )×(K2 ), whereas

Ψ ∈ ∧NH ' C(KN).

Note that asymptotically for 1� N � K, one gets
(
K
2

)2 ∼ K4, but
(
K
N

)
∼ KN .

Finally, we connect reduced density matrices to quantum channels1, a well-
known concept studied in quantum information theory. In the formalism of
second quantization, the p-body reduced density matrix γpΨ of a fermionic N -
body pure state Ψ can be written as

γpΨ = trp+1,...,N |Ψ〉〈Ψ| =
∑

ip+1<···<iN

a|ip+1,...,iN 〉 |Ψ〉〈Ψ| a
†
|ip+1,...,iN 〉.

1For an introduction, refer to Nielsen and Chuang (2000).
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By a linear extension to density matrices on ∧NH, we get a completely positive,
(up to the normalization factor

(
N
p

)
) trace preserving quantum channel

γp : B
(
∧NH

)
→ B (∧pH)

with Kraus operators a|ip+1,...,iN 〉 for all 1 ≤ ip+1 < · · · < iN ≤ dimH.
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Chapter 3

Properties of Fermion Density
Matrices

3.1 General characteristics
By the Hilbert Schmidt theorem, there is a complete orthonormal system (ϕi)i
in ∧pH of eigenvectors of γpΨ, i.e.

γpΨϕi = λiϕi, λi ∈ R for all i.

Consider the one-body case p = 1. By Standard Example 27 in the ap-
pendix, Ψ can be expanded in (ϕi1 ∧ · · · ∧ ϕiN )i1<···<iN . The following proposi-
tion shows that it is sufficient to consider eigenvectors with nonzero eigenvalues
only, which will be particularly interesting if rank γΨ <∞.

Proposition 4. Ψ can be expanded as a linear combination of Slater determi-
nants constructed from eigenvectors of γΨ which belong to nonzero eigenvalues.

Proof. What remains to be shown is the following: if γΨϕi = 0, ϕi won’t show
up in the expansion:

‖aϕiΨ‖
2 = 〈ϕi | γΨϕi〉 = 0.

Note that γpΨ contains less information the smaller p gets, or more strictly
speaking:

Proposition 5. Let Ψ ∈ ∧NH, ‖Ψ‖ = 1, then γpΨ can be obtained from γp+1
Ψ .

Proof. For any complete orthonormal system |i〉i of H,∑
k

〈
i1 ∧ · · · ∧ ip ∧ k | γp+1

Ψ j1 ∧ · · · ∧ jp ∧ k
〉

=

〈
Ψ | a†j1 · · · a

†
jp

(∑
k

n̂k

)
aip · · · ai1Ψ

〉
= (N − p) 〈i1 ∧ · · · ∧ ip | γpΨ j1 ∧ · · · ∧ jp〉 .

6



Proposition 6. Let Ψ := ψ1∧· · ·∧ψN be a Slater determinant with orthonormal
ψ1, . . . , ψN ∈ H. Then γpΨ is the orthogonal projection on the subspace spanned
by
(
ψi1 ∧ · · · ∧ ψip

)
i1<···<ip

.

This can be seen by an explicit calculation or derived directly from the
definition of γpΨ using creation and annihilation operators.

It is currently not known whether the converse is also true, except for p = 1:

Proposition 7. Ψ is a Slater determinant if and only if γΨ is an orthogonal
projection.

Proof. Only "⇐" remains to be shown. From σ (γΨ) = {0, 1} and tr γΨ = N it
follows that rank γΨ = N . That is, by proposition 4, Ψ can be expanded into a
single Slater determinant.

We make use of the anticommutator relations for creation and annihilation
operators to show the following proposition, which is intricately connected with
the antisymmetry constraint of the wave function.

Proposition 8. The expected values of γΨ are in the range [0, 1].

Proof. We have already shown that γΨ is positive semidefinite. γΨ ≤ 1 follows
from

〈ϕ | γΨϕ〉 =
〈
Ψ | a†ϕaϕΨ

〉
=
〈
Ψ |
(
1− aϕa†ϕ

)
Ψ
〉

= ‖Ψ‖2 −
∥∥a†ϕΨ

∥∥2 ≤ 1.

We state a classification of the ranks of fermion one-body density matrices.
A proof has been given by Friesecke (2003).

Theorem 9. There exists a Ψ ∈ ∧NH such that rank γΨ = K, if and only if

K =

 1 N = 1
≥ 2, even N = 2
≥ N, 6= N + 1 N ≥ 3

In particular, rank γΨ is at least N and cannot be equal to N + 1.

Given an unitary operator U : H → H, we obtain an unitary operator (also
denoted by U) acting on ∧NH by

U (i1 ∧ · · · ∧ iN ) := (Ui1) ∧ · · · ∧ (UiN ) .

Proposition 10. Given such an unitary operator U ,

U∗γpUΨU = γpΨ.
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Proof. We use

U∗a†UϕU = a†ϕ, U∗aUϕU = a†ϕ for all ϕ ∈ ∧NH

to get

〈χ |U∗γpUΨUϕ〉 =
〈
UΨ | a†UϕaUχUΨ

〉
=
〈

Ψ |
(
U∗a†UϕU

)(
U∗aUχU

)
Ψ
〉

=
〈
Ψ | a†ϕaχΨ

〉
= 〈χ | γpΨϕ〉 for all ϕ, χ ∈ ∧pH.

This might be a starting point for a simplification of the problem: introduce
equivalence classes on ∧NH by Ψ ∼ Φ :⇔ Ψ = UΦ for some unitary U .

As an immediate consequence of proposition 10, the convex hull

conv
{
γpΨ : Ψ ∈ ∧NH, ‖Ψ‖ = 1

}
is invariant under these unitary transformations, since

U∗

(
n∑
i=1

αiγ
p
Ψi

)
U =

n∑
i=1

αiγ
p
U∗Ψi

for all 0 ≤ α1, . . . , αn ≤ 1 with α1 + · · ·+ αn = 1.

3.2 Duality between γpΨ and γN−pΨ

We may further expand the concept of the annihilation operator: define an
antilinear operator

Ψ̂ : ∧pH → ∧N−pH, (Ψ̂ϕ)(x) := (aϕΨ) (x) =
(
N

p

) 1
2
∫

Ωp
ϕ(y)Ψ(y, x) dy,

where x ∈ ΩN−p and y runs over all Ωp. Note that for all ϕ ∈ ∧pH and
χ ∈ ∧N−pH,

〈
χ | Ψ̂ϕ

〉
=
(
N

p

) 1
2
∫

ΩN
χ(x)ϕ(y)Ψ(y, x) dxdy

= (−1)(N−p) p
(
N

p

) 1
2
∫

ΩN
ϕ(y)χ(x)Ψ(x, y) dxdy

= (−1)(N−p) p
〈
ϕ | Ψ̂χ

〉
,

where the sign factor comes from the permutation (y, x) → (x, y). Using this
property, it follows that

〈χ | γpΨϕ〉 = 〈aϕΨ | aχΨ〉 =
〈

Ψ̂ϕ | Ψ̂χ
〉

= (−1)(N−p) p
〈
χ | Ψ̂2ϕ

〉
for all ϕ, χ ∈ ∧pH, i.e.

γpΨ = (−1)(N−p) p Ψ̂2.
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Proposition 11. There is a one-to-one correspondence between the normalized
eigenvectors of γpΨ and γN−pΨ with the same nonzero eigenvalue.

Proof. Let
γpΨϕ = λϕ, λ > 0, ϕ ∈ ∧pH with ‖ϕ‖ = 1.

Define

χ :=
i(N−p) p√

λ
Ψ̂ϕ,

then ‖χ‖ = 1 as ∥∥∥Ψ̂ϕ
∥∥∥2

= ‖aϕΨ‖2 = 〈ϕ | γpΨϕ〉 = λ 〈ϕ |ϕ〉

and χ is an eigenvector of γN−pΨ with eigenvalue λ. In fact,

γN−pΨ

(
Ψ̂ϕ
)

= (−1)(N−p) pΨ̂3ϕ = Ψ̂γpΨϕ = λ
(

Ψ̂ϕ
)
.

Applying the same rule to χ, we recover the original ϕ:

ip (N−p)
√
λ

Ψ̂χ =
(−1)p (N−p)

λ
Ψ̂2ϕ =

1
λ
γpΨϕ = ϕ.

If ϕ′ ∈ ∧pH is another normalized eigenvector of λ perpendicular to ϕ, then χ′
is perpendicular to χ:

〈χ′ |χ〉 =
1
λ

〈
Ψ̂ϕ′ | Ψ̂ϕ

〉
=

1
λ
〈ϕ | γpΨϕ

′〉 = 〈ϕ |ϕ′〉 = 0.

Note that γpΨ is Hilbert-Schmidt, hence all nonzero eigenvalues have finite mul-
tiplicity and eigenvectors corresponding to different eigenvalues are orthogo-
nal.

3.3 Decomposition of the one-body density ma-
trix

We first derive a formula due to Ando (1963). Let |i〉i be a complete orthonormal
system of eigenvectors of γΨ with corresponding eigenvalues λi such that λ1 is
the greatest eigenvalue. Ψ can be expanded in Slater determinants as follows:

Ψ =
∑

I=(i1,...,iN )
i1<···<iN

xI |i1, . . . , iN 〉, xI ∈ C.

Set

Φa :=
∑
1∈I

xI |i2, . . . , iN 〉 ∈ ∧N−1H and

Φb :=
∑
1/∈I

xI |i1, . . . , iN 〉 ∈ ∧NH,

9



then Ψ = a†1Φa + Φb. From that,

〈i | γΨj〉 =
〈

Ψ | a†jaiΨ
〉

=
〈

Φa | a1a
†
jaia

†
1Φa

〉
+
〈

Φb | a†jaia
†
1Φa

〉
+
〈

Φa | a1a
†
jaiΦb

〉
+
〈

Φb | a†jaiΦb
〉
.

Since a1Φa = 0, the first term equals〈
Φa | a1a

†
jaia

†
1Φa

〉
= ‖Φa‖2 〈i | 1〉 〈1 | j〉+

〈
Φa | a†jaiΦa

〉
,

and
‖Φa‖2 = 〈1 | γΨ1〉 = λ1.

Iff Φb = 0, we have λ1 = ‖Φa‖2 = ‖Ψ‖2 = 1; then

γΨ = |1〉〈1|+ γΦa .

Now, let λ1 6= 1, i.e. λ1 < 1.
Clearly,

〈
Φa | a1a

†
jaiΦb

〉
is zero for i = 1 and i, j 6= 1. In the remaining

case i 6= 1, j = 1 it equals 〈i | γΨ1〉 = 0, i.e. it vanishes altogether. Note that
this implies the total orthogonality of Φa and Φb, 〈Φa | aiΦb〉 = 0 for all i. An
analogous argument shows that

〈
Φb | a†jaia

†
1Φa

〉
= 0 for all i, j.

Set
Ψa :=

Φa
‖Φa‖

and Ψb :=
Φb
‖Φb‖

,

then the decomposition can be written as

〈i | γΨj〉 = λ1 〈i | 1〉 〈1 | j〉+ λ1 〈i | γΨaj〉+ ‖Φb‖2 〈i | γΨbj〉 .

Using
N = tr γΨ =

∑
i

〈i | γΨi〉 = λ1 + λ1(N − 1) +N ‖Φb‖2 ,

we get ‖Φb‖2 = 1− λ1. Summarising finally yields

Lemma 12. γΨ can be decomposed into

γΨ = λ1|1〉〈1|+ λ1γΨa + (1− λ1) γΨb , (3.1)

where Ψa ∈ ∧N−1H and Ψb ∈ ∧NH are normalized functions such that

Ψ =
√
λ1 · a†1Ψa +

√
1− λ1 ·Ψb and

a1Ψa = 0, a1Ψb = 0, 〈Ψa | aiΨb〉 = 0 ∀ i.

In the following we need another lemma which can be found in Ando (1963).

Lemma 13. In the decomposition (3.1), if γΨa has a normalized eigenvector ϕ
belonging to the eigenvalue 1, then ϕ will also be an eigenvector of γΨ belonging
to the eigenvalue λ1, and aϕΨb = 0 when λ1 6= 1.

10



Proof. Since λ1 is the greatest eigenvalue of γΨ, the assertion follows from

λ1 ≥ 〈ϕ | γΨϕ〉 = λ1 |〈1 |ϕ〉|2 + λ1 〈ϕ | γΨaϕ〉︸ ︷︷ ︸
=1

+(1− λ1) 〈ϕ | γΨbϕ〉 ≥ λ1.

Now we can proof a slightly sharper form of a result due to Ando (1963).
Proposition 7 handles the case rank γΨ = N , and rank γΨ can never be N + 1,
by theorem 9. The next simplest step is therefore rank N + 2.

Proposition 14. Let rank γΨ = N + 2. Then,

• if N is odd, λ1 = 1 and each of the remaining nonzero eigenvalues will be
evenly degenerate,

• if N is even, each nonzero eigenvalue will be evenly degenerate.

Let {ϕ1, . . . , ϕN+2} be the set of orthonormal eigenvectors of γΨ corresponding
to nonzero eigenvalues λ1, . . . , λN+2, respectively. Then Ψ is a linear com-
bination of, at most, N+1

2 (N odd) or N
2 + 1 (N even) Slater determinants

constructed from these eigenvectors.

Proof. If N = 1, rank γΨ cannot N + 2 by theorem 9. If N = 2, in the decom-
position 3.1, Ψa =: ϕ2 ∈ H is a function of a single particle. Using lemma 13,

γΨ = λ1|ϕ1〉〈ϕ1|+ λ1|ϕ2〉〈ϕ2|+ (1− λ1) γΨb ,

and thus λ1 < 1 is at least doubly degenerate. Since rank γΨb must be equal
to 2, Ψb is a Slater determinant: Ψb = ϕ3 ∧ ϕ4 with orthonormal ϕ1, . . . , ϕ4.
Finally,

Ψ =
√
λ1 · ϕ1 ∧ ϕ2 +

√
1− λ1 · ϕ3 ∧ ϕ4

is a linear combination of 2 Slater determinants, as required. For general N ,
consider again the decomposition (3.1):

γΨ = λ1|ϕ1〉〈ϕ1|+ λ1γΨa + (1− λ1) γΨb .

The case λ1 = 1: then the last term vanishes, and since aϕ1Ψa = 0, every
eigenvector of γΨa is also an eigenvector of γΨ with the same eigenvalue. From
rank γΨa = N + 1 we gain the assertion by induction. Note that Ψ = a†ϕ1

Ψa,
hence the number of Slater determinants in the expansion of Ψ and Ψa is the
same.

The case λ1 < 1: we have rank γΨb ≤ N + 1 as rank γΨ ≥ 1 + rank γΨb .
(Note that γΨa and γΨb are positive semidefinite.) By theorem 9, rank γΨb 6=
N + 1, hence rank γΨb = N and Ψb is a Slater determinant. Thus, there are
orthonormal ψ1, . . . , ψN ∈ H such that Ψb = ψ1 ∧ · · · ∧ ψN , and γΨb is an
orthogonal projection on the subspace spanned by ψ1, . . . , ψN .

We show next that, on the contrary, Ψa cannot be a Slater determinant:
assuming Ψa = χ2 ∧ · · · ∧ χN , each χi is an eigenvector of γΨa with eigenvalue
1; thus by lemma 13, it is also an eigenvector of γΨ, and 〈χi |ψj〉 = 0 for all i, j.
This means that rank γΨ = 2N , contradicting the assumptions if N ≥ 3.
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In the sole remaining case rank γΨa = N + 1, the range of γΨa must be
spanned by ψ1, . . . , ψN and one more additional vector, denoted ψN+1. Hence
Ψa can be written as

Ψa =
∑

1≤i1<···<iN−1≤N+1

xi1,...,iN−1 · ψi1 ∧ · · · ∧ ψiN−1 .

By 3.1, for all i = 1 . . . N , x1,...,i−1,i+1,...,N = 〈Ψa | aψiΨb〉 = 0, i.e. only configu-
rations with iN−1 = N + 1 contribute to the sum. Thus ψN+1 is an eigenvector
of γΨa with eigenvalue 1, and - by lemma 13 - also an eigenvector of γΨ. Without
loss of generality we may assume ϕ2 = ψN+1.

Applying the decomposition 3.1 to Ψa yields

γΨa = |ϕ2〉〈ϕ2|+ γΦ,

where Φ ∈ ∧N−2H and rank γΦ = N . Let χ1, . . . , χN be the normalized
eigenvectors of γΦ belonging to nonzero eigenvalues µ1, . . . , µN , respectively.
Since these eigenvectors span the same subspace as {ψ1, . . . , ψN}, we have
γΨb =

∑N
i=1 |χi〉〈χi|, and without loss of generality, Ψb = χ1 ∧ · · · ∧ χN .

Putting everything together, it follows that

γΨ = λ1|ϕ1〉〈ϕ1|+ λ1|ϕ2〉〈ϕ2|+
N∑
i=1

(λ1µi + 1− λ1) |χi〉〈χi|.

Thus we have identified the χi’s as eigenvectors of γΨ, that is, without loss of
generality, ϕi+2 = χi for all i = 1 . . . N . N cannot be odd, since otherwise, by
induction, µ1 = 1 and ϕ3 was an eigenvector of γΨ with eigenvalue 1, contra-
dicting λ1 < 1. But N being even, each µi is evenly degenerate and hence also
the eigenvalues of γΨ. Note that

Ψ = a†ϕ1
Ψa + Ψb = a†ϕ1

Ψa + Ψb = a†ϕ1
a†ϕ2

Φ + ϕ3 ∧ · · · ∧ ϕN+2.

Since the eigenvectors χ1, . . . , χN of γΦ are also eigenvectors of γΨ, the asserted
expansion of Ψ follows by induction.

A generalization of the assertion for the case N = 2 in proposition 14 can
be found in Friesecke (2003):

Proposition 15. Let Ψ ∈ ∧NH, ‖Ψ‖ = 1. If N ≡ 2 mod 4, then each nonzero
eigenvalue of γN/2Ψ is evenly degenerate.

The proof uses the self-duality of γN/2Ψ .

3.4 The convex hull of one-body density matrices
It is a well known fact in physics that the ground states of non-interacting many
particle systems are Slater determinants. In this section we present a rigorous
mathematical proof that Slater determinants actually are the extreme points of
the set of one-body density matrices.

Let H be a separable Hilbert space. For every trace class A : H → H with

Aϕ =
∞∑
i=1

λi 〈ϕi |ϕ〉ϕi ∀ϕ ∈ H, 〈ϕi |ϕj〉 = δij , λi ∈ R,

12



the trace norm equals

‖A‖tr =
∞∑
i=1

|λi| . (3.2)

Theorem 16. Given a separable Hilbert space H,

conv {γΨ : Ψ ∈ ∧NH, ‖Ψ‖ = 1}
‖·‖tr

= {g : H → H : g selfadjoint, 0 ≤ g ≤ 1, tr g = N} .

Designate the left set by L and the right set by R. Note that every g ∈ R is
trace class and hence compact.

Proof.

• "⊆" follows from γΨ ∈ R for all Ψ as well as R convex and closed with
respect to ‖·‖tr since ‖A‖ ≤ ‖A‖tr for all A : H → H trace class.

• "⊇" According to the Hilbert-Schmidt theory for compact self-adjoint op-
erators, every g ∈ R has a complete orthonormal system (ϕi)i∈N of eigen-
vectors with corresponding eigenvalues λi ∈ R, i.e.

gϕ =
∞∑
i=1

λi 〈ϕi |ϕ〉ϕi ∀ϕ ∈ H.

We have 0 ≤ λi ≤ 1 and
∑
i λi = tr g = N . If Ψ = ϕi1 ∧ · · · ∧ ϕiN is a

Slater determinant, then

γΨϕ =
N∑
k=1

〈ϕik |ϕ〉ϕik ∀ϕ ∈ H.

The assertion follows now from (3.2) and the following lemma.

Remember that

`1 :=

{
(tn) : tn ∈ R ∀n ∈ N,

∞∑
n=1

|tn| <∞

}
is a Banach space over R with the norm

‖t‖1 :=
∞∑
n=1

|tn| .

Lemma 17. Let

T :=
{
t ∈ `1 : 0 ≤ tn ≤ 1 ∀n, ‖t‖1 = N

}
⊂ `1,

then the extreme points are

exT = {t ∈ T : tn ∈ {0, 1} ∀n}

and
T = conv exT .

13



Proof. Let t ∈ T and 0 < ti < 1 for an i ∈ N. Since ‖t‖1 = N ∈ N, there is an
j 6= i such that 0 < tj < 1. For ε > 0 small enough,

r := (t1, t2, . . . , ti + ε, . . . , tj − ε, . . . ) ∈ T and
s := (t1, t2, . . . , ti − ε, . . . , tj + ε, . . . ) ∈ T.

As t = 1
2 (r + s), t 6∈ exT .

Now let t ∈ T , tn ∈ {0, 1} ∀n. From t = 1
2 (x + y) with x, y ∈ T it follows

that x = y = t, i.e. t ∈ exT .
We show next, by induction with respect to m, that

t ∈ conv exT ∀ t ∈ T with tn = 0 ∀n > m, m ∈ N fixed.

m = N : then t ∈ exT .
m = N + 1: set

sin :=
{

1 n 6= i, 1 ≤ n ≤ N + 1
0 otherwise , i = 1, . . . , N + 1.

Then si ∈ exT and t =
∑N+1
i=1 (1− ti) si.

m > N + 1: without loss of generality tm 6= 0 and tn ≥ tm ∀n = 1, . . . ,m. Set

sn :=
{

1 m−N < n ≤ m
0 otherwise

and
r :=

1
1− tm

[t− tms] ∈ T.

By induction, r ∈ conv exT , hence also

t = (1− tm)r + tms ∈ conv exT.

Finally, let t ∈ T . Given ε > 0, choose m ∈ N with
∑
n>m |tn| <

ε
2 . Without

loss of generality tm ≤ 1− ε
2 . Set

rn :=

 tn n < m
tm +

∑
k>m tk n = m

0 n > m
,

then r ∈ conv exT by the above result and ‖t− r‖1 < ε.

3.5 Eigenvalues of ΓΨ in case of even K = N + 2

Let again H be a finite, K-dimensional Hilbert space and Ψ ∈ ∧NH an N -
particle antisymmetrized wavefunction, and additionally assume thatK = N+2
and N is even. We remark that the former is equivalent to demanding rank γΨ ≤
N + 2 as Ψ can always be expanded in eigenvectors of γΨ corresponding to
nonzero eigenvalues.1 By duality, there exists a ϕ ∈ ∧2H such that

Ψ = aϕ|12 . . .K〉,
1Also compare with proposition 14.
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and – since we are interested in the eigenvalues of ΓΨ – by the Coleman ex-
pansion theorem we may w.l.o.g. express ϕ =

∑K/2
i=1 xi|2i− 1, 2i〉 with xi ∈ C.

Then

Ψ =
K/2∑
i=1

xi · a2i a2i−1|12 . . .K〉,
∑
i

|xi|2 = 1

as shown in figure 3.1 for a single Slater determinant. Note that {|1〉, . . . , |K〉}

Figure 3.1: Illustration of a|2i−1,2i〉|12 . . .K〉

are exactly the eigenvalues of the 1-particle reduced density matrix γΨ as

〈i | γΨj〉 = 〈ajΨ | aiΨ〉 = δij

(
1− |xk|2

)
with i ∈ {2k − 1, 2k}.

A direct inspection shows that

〈ij |ΓΨ ij〉 = ‖ajaiΨ‖2 =
∑
k

{2k−1,2k}
∩{i,j}=∅

|xk|2 = 1−
∑
k

{2k−1,2k}
∩{i,j}6=∅

|xk|2

and for |ij〉 6= |pq〉

〈pq |ΓΨ ij〉 =
{
xl · xk, |ij〉 = |2k − 1, 2k〉 and |pq〉 = |2l − 1, 2l〉
0, otherwise

Note that all |ij〉 which cannot be written as |ij〉 = |2k − 1, 2k〉 are eigenvectors
of ΓΨ with corresponding eigenvalue zero, so it only remains to determine the
eigenvalues of the submatrix

GnΨ :=


1− |x1|2 x1 · x2 . . . x1 · xn

x2 · x1 1− |x2|2
...

...
. . .

xn · x1 . . . 1− |xn|2

 , n = K/2. (3.3)

For example, in case of K = 6, we have ϕ = x1 |12〉+ x2 |34〉+ x3 |56〉, so

Ψ = aϕ|123456〉 = x1|3456〉+ x2|1256〉+ x3|1234〉.

Then a|2i−1,2i〉Ψ is explicitly

a|12〉Ψ = x2|56〉+ x3|34〉,
a|34〉Ψ = x1|56〉+ x3|12〉,
a|56〉Ψ = x1|34〉+ x2|12〉
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and a|13〉Ψ = −x3|24〉, a|14〉Ψ = x3|23〉, . . . . Plugging these in yields

〈12 |ΓΨ 12〉 =
∥∥a|12〉Ψ

∥∥2 = |x2|2 + |x3|2 = 1− |x1|2 ,
〈34 |ΓΨ 12〉 =

〈
a|12〉Ψ | a|34〉Ψ

〉
= x2 · x1,

〈13 |ΓΨ 12〉 =
〈
a|12〉Ψ | a|13〉Ψ

〉
= 0,

〈13 |ΓΨ 13〉 =
∥∥a|13〉Ψ

∥∥2 = |x3|2 ,
...

Expressed in the basis set B ∪ C1 ∪ C2 ∪ C3 with

B = (|12〉, |34〉, |56〉)
C1 = (|35〉, |36〉, |45〉, |46〉)
C2 = (|15〉, |16〉, |25〉, |26〉)
C3 = (|13〉, |14〉, |23〉, |24〉) ,

we have

ΓΨ =


G3

Ψ

D1
Ψ

D2
Ψ

D3
Ψ


where G3

Ψ is defined in equation (3.3) and Di
Ψ = |xi|2 · I4.

Rewriting GnΨ as

GnΨ = In − 2

 |x1|2
. . .

|xn|2

+

 x1

...
xn

 (x1, . . . , xn)

and applying the matrix determinant lemma

det
(
A+ uvT

)
=
(
1 + vTA−1u

)
det(A)

for all vectors u, v and invertible matrices A, we can explicitly derive the char-
acteristic polynomial of GnΨ, namely

χT (GnΨ) =

(
1−

n∑
i=1

ri
T + 2 ri − 1

)
n∏
i=1

(T + 2 ri − 1) , ri := |xi|2 .

In particular, the eigenvalues depend on |xi|2 only. For K = 6 and K = 8 this
yields

χT (G3
Ψ) = T 3 − 2T 2 + T − 4 r1r2r3,

χT (G4
Ψ) = T 4 − 3T 3 + 3T 2 −

1 +
∑
i<j<k

rirjrk

T

− 16 r1r2r3r4 + 4
∑
i<j<k

rirjrk.
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In the following we explicitly calculate the eigenvalues of ΓΨ for arbitrary Ψ
and K = 6, N = 4. From the above arguments, these are exactly

{r1, r2, r3} ∪
{
T : T 3 − 2T 2 + T − 4 r1r2r3 = 0

}
with ri ≥ 0 and

∑3
i=1 ri = 1. In particular, u := r1r2r3 covers the range [0, 1

27 ].
Let λ1 be the greatest root of T 3 − 2T 2 + T − 4u, then both remaining roots
λ2,3 can be expressed in terms of λ1, yielding

λ2,3 = 1− λ1

2
±

√
λ1

(
1− 3

4
λ1

)
. (3.4)

Note that this term depends on u (that is, Ψ) only indirectly via λ1! Figure 3.2
shows a plot of (3.4), from which we deduce that λ1 ∈

[
1, 4

3

]
since λ1 ∈ [0, 1]

would contradict λ1 being the greatest root. Plugging in u = 0 and u = 1
27

and using the fact that λ1 depends continuously on u shows that λ1 actually
covers

[
1, 4

3

]
. We remark the consistency with a result by Yang Yang (1962),

the eigenvalues of ΓΨ being less or equal to 1
2
N
K (K −N + 2).

0.2 0.4 0.6 0.8 1.0 1.2
Λ1

0.4

0.6

0.8

1.0

1.2

1.4
Λ2

Figure 3.2: λ2 vs. λ1

3.6 Pair structure inheritance
Given a positive semidefinite operator2 h : ∧2H → ∧2H, we try to find the
greatest eigenvalue of the corresponding N -body Hamiltonian H, additionally
assuming that K := dimH is even and h has a special form, namely

h =
K/2∑
i,j=1

hij |2i− 1, 2i〉〈2j − 1, 2j|

and a positive semidefinite matrix (hij). In N -body space,

H =
K/2∑
i,j=1

hij a
†
|2i−1,2i〉a|2j−1,2j〉.

2What follows applies literally to the minimization of 〈Ψ |H Ψ〉 for negative semidefinite
h.
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Define projectors

m1,i := (1− n2i−1)n2i,

m2,i := n2i−1 (1− n2i)

for all i = 1, . . . ,K/2, where nj = a†jaj is the number operator for state j.
The intuitive picture behind m2,i is a number operator for "unlike pairs" as in
figure 3.3. The decisive feature of these operators is the fact that they commute
pairwise with themselves and with H, i.e.

[mp,i,mq,j ] = 0 ∀ p, q ∈ {1, 2}, i, j = 1, . . . ,K/2, and [H,mp,i] = 0 ∀ p, i.

To proof the last equality, note that, for example,

m2,i a
†
|2i−1,2i〉 = a†2i−1 a2i−1 a2i a

†
2i · a

†
2i−1 a

†
2i = 0.

The operator

m :=
K/2∑
i=1

m1,i +m2,i

counts the total number of unlike pairs.

Figure 3.3: An "unlike pair"

The next proposition establishes that eigenvectors of H inherit the pair
structure of h.

Proposition 18. Each normalized eigenvector Ψ of H corresponding to the
greatest eigenvalue can be chosen such that it has minimal number of unlike
pairs, i.e., 〈Ψ |mΨ〉 = 0 if N is even and 〈Ψ |mΨ〉 = 1 if N is odd.

Proof. We may assume that Ψ is also an eigenvector of mp,i ∀ p, i and thus an
eigenvector of m. Now suppose, on the contrary, that 〈Ψ |mΨ〉 ≥ 2, then there
are i < j and p, q ∈ {1, 2} with mp,i Ψ = Ψ and mq,j Ψ = Ψ, w.l.o.g. p = 1,
q = 2. We transform Ψ as shown in figure 3.4, or more formally:

Ψ̃ := a†2i−1a2j−1Ψ.

Ψ̃ is a normalized eigenvector of mp,k ∀ p, k which reduces the number of unlike
pairs by two, and has the following property:

〈
Ψ̃ | a†|2k−1,2k〉a|2l−1,2l〉 Ψ̃

〉
=


〈

Ψ | a†|2k−1,2k〉a|2l−1,2l〉Ψ
〉
, l /∈ {i, j}

0, l = j
δkl l = i

for all k, l. As an immediate consequence,〈
Ψ̃ |HΨ̃

〉
− 〈Ψ |HΨ〉 = hii ≥ 0.

Since Ψ maximizes 〈Ψ |HΨ〉, hii must be 0, and Ψ̃ is also an eigenvector of H
corresponding to the greatest eigenvalue. This establishes the proposition.
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Figure 3.4: Collapse of two unlike pairs

With this proposition in mind, the next general idea is to work effectively
with one-body instead of two-body reduced density matrices. To this end we
project onto the pair structure as depicted in figure 3.5 for a single Slater de-
terminant, or more formally,

Ppair =
K/2∏
i=1

[n2i−1n2i + (1− n2i−1) (1− n2i)]

with the well-known single-particle number operator ni = a†iai. Now introduce

Figure 3.5: Effective pair structure

pair creation and annihilation operators,

b†i := a†|2i−1,2i〉 = a†2i−1a
†
2i,

bi := a|2i−1,2i〉 = a2ia2i−1

for all i = 1, . . . ,K/2, with the following commutator relations on the pair
structure Hilbert space:

[bi, bj ] = 0,
[
b†i , b

†
j

]
= 0,[

bi, b
†
j

]
= δij

(
1− 2b†i bi

)
for all i, j.

In particular, the "pair particles" acquire bosonic character as expected, but
nevertheless

[
bi, b

†
i

]
6= 0 in general.

Concluding, we have taken the first steps to reduce the problem arg maxΨ 〈Ψ |H Ψ〉
on the

(
K
N

)
-dimensional Hilbert space ∧NH to a similar problem on the

(
K/2
N/2

)
-

dimensional pair Hilbert space.
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3.7 Numerics-based conjectures
Numerical experiments give rise to the following conjectures:

• For general p, γpΨ is an orthogonal projection if and only if Ψ is a Slater
determinant, i.e., the generalization of proposition 7 holds.

• maxΨ ‖γpΨ‖fro is reached if and only if γpΨ is an orthonormal projection
(i.e. the maximum is

(
N
p

)
).
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Chapter 4

The Periodic Table Revisited

In this chapter we introduce the FermiFab1 Matlab toolbox which casts the
perturbation-theory (PT) and full configuration interaction (FCI) models de-
veloped by Friesecke and Goddard (2008b,a) into an automated computation
pipeline. Comparing the results for the atoms lithium – neon previously ob-
tained "by hand" with the toolbox output verifies the correctness of the pipeline.
Next, we use the toolbox to calculate the simultaneous angular momentum and
spin eigenspaces of potassium – zinc, assuming that all orbitals up to 3p are
permanently occupied, so the remaining degrees of freedom stem from the oc-
cupation of the 3d and 4s orbitals. These eigenspaces block-diagonalize the
Hamiltonian and thus simplify the diagonalization task significantly.

4.1 Many-particle theory for atomic shell elec-
trons

In this section we recall the main results by Friesecke and Goddard (2008b). N
always denotes the number of electrons and Z > 0 the nuclear charge. Since we
investigate also ions, not only neutral atoms, we don’t fix Z = N .

The atoms are treated in the Born-Oppenheimer approximation, that is, the
nucleus is assumed to be fixed, only the electron dynamics is investigated. The
time-independent nonrelativistic Schrödinger equation reads HΨ = EΨ with
the Hamiltonian

H = H0 + Vee, (4.1)

where in atomic units2

H0 =
N∑
i=1

(
−1

2
∆i −

Z

|xi|

)
, Vee =

∑
i<j

1
|xi − xj |

. (4.2)

The xi ∈ R3 are the electronic coordinates. H0 contains the kinetic energy
and external potential arising from the nucleus, whereas Vee describes the inter-
electron Coulomb repulsion. The antisymmetric wavefunction Ψ (x1, s1, . . . ,xN , sN )
depends on both spatial and spin coordinates si ∈ {↑, ↓}. For simplicity we work

1http://sourceforge.net/projects/fermifab
2For each x ∈ R3, we set |x| := ‖x‖2.
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in atomic units, that is, the electron mass me, the Planck constant ~ and the
electron charge e are all set to 1.

The symmetry group of the Hamiltonian (4.1) is SO(3) × SU(2) × Z2 cor-
responding to total angular momentum, spin and parity, respectively. These
operators are L2 = L2

x + L2
y + L2

z with L ≡ (Lx, Ly, Lz) given by

L =
N∑
i=1

Li,

where Li is the single-body angular momentum operator acting on particle i.
The same relations hold for S. The N -body parity operator R is defined by

RΨ (x1, s1, . . . ,xN , sN ) = Ψ (−x1, s1, . . . ,−xN , sN ) .

We recall the following well known facts.

Lemma 19.

1. For arbitrary N and Z, a set of operators which commutes with the Hamil-
tonian H and with each other is given by

L2, L3, S2, S3, R. (4.3)

2. The eigenvalues of L2, S2, and R – acting on L2
a

(
(R3 × Z2)N

)
– are,

respectively,

L(L+ 1), L = 0, 1, 2, . . . (4.4)

S(S + 1), S =
{

1
2 ,

3
2 ,

5
2 , . . . ,

N
2 , N odd,

0, 1, 2, . . . , N2 , N even (4.5)

p, p = ±1. (4.6)

3. For fixed L, S and p, on any joint eigenspace of H, L2, S2 and R, L3

has eigenvalues M = −L,−L + 1, . . . , L, and S3 has eigenvalues MS =
−S,−S + 1, . . . , S. In particular, the eigenspace has dimension greater
or equal to (2L + 1) · (2S + 1), with equality in the case when the joint
eigenspaces of H and the operators (4.3) are non-degenerate (i.e., one-
dimensional).

Note that using the operators L± = Lx ± iLy and S± = Sx ± iSy, one can
traverse all eigenspaces of L3 and S3, respectively.

The basic idea behind the perturbation theory (PT) model consists of rescal-
ing the Schrödinger equation and defining a Z-independent Hamiltonian

H̃0 =
N∑
i=1

(
−1

2
∆i −

1
|xi|

)
, Ẽ =

1
Z2

E. (4.7)

Now we can finally state the PT model, which is derived and rigorously justified
by Friesecke and Goddard (2008b).

PHPΨ = EΨ, Ψ ∈ V0, P = orthogonal projector onto V0,

V0 = ground state eigenspace of H0

(4.8)
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Theorem 20. Let N = 1, . . . , 10 and Z > 0, and let n(N) be the number of
energy levels of the PT model (4.8). Then:

1. For all sufficiently large Z, the lowest n(N) energy levels E1(N,Z) <
· · · < En(N)(N,Z) of the full Hamiltonian (4.1) have exactly the same
dimension, total spin quantum number, total angular momentum quantum
number, and parity as the corresponding PT energy levels EPT

1 (N,Z) <
· · · < EPT

n(N)(N,Z).

2. The lowest n(N) energy levels of the full Hamiltonian have the asymptotic
expansion

Ej(N,Z)
Z2

=
EPT
j (N,Z)
Z2

+O

(
1
Z2

)
= Ẽ(0) +

1
Z
Ẽ

(1)
j +O

(
1
Z2

)
as Z →∞,

(4.9)

where Ẽ(0) is the lowest eigenvalue of H̃0 and the Ẽ(1)
j are the energy levels

of P̃ VeeP̃ on Ṽ0.

3. The projectors P1, . . . , Pn(N) onto the lowest n(N) eigenspaces of the full
Hamiltonian satisfy3

∥∥Pj − PPT
j

∥∥ = O

(
1
Z

)
as Z →∞, (4.10)

where the PPT
j are the corresponding projectors for the PT model.

4.2 Orbital occupation in transition metals
To extend the ideas by Friesecke and Goddard (2008a) to the atoms potassium
– zinc, we first choose an explicit representation of the single-particle dilated
hydrogen orbitals up to 4s in equation (4.11) below. The "original" orbitals can
be regained by plugging the nuclear charge Z into the dilation parameters Zi
for all i = 1, . . . , 7. For brevity’s sake we have omitted the spin here, which is

3Here, ‖·‖ is the usual operator norm.
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just a multiplication by |↑〉 or |↓〉, and we have set r ≡ |x|.

ϕ1s(x) =
Z

3
2
1√
π

e−Z1r

ϕ2s(x) ∼
(

1− 1
2

2Z1 + Z2

3
r

)
e−Z2r/2

ϕ2pi(x) =
Z

5/2
3√
32π

xi e−Z3r/2, i = 1, 2, 3

ϕ3s(x) ∼
(

1− 2
3
c1r +

2
27
c2r

2

)
e−Z4r/3

ϕ3pi(x) =
2
27

(
10Z7

5

π (9Z2
3 − 8Z3Z5 + 4Z2

5 )

)1/2

xi

(
1− 1

6
3Z3 + 2Z5

5
r

)
e−Z5r/3

ϕ3d0(x) =
1
81

√
Z3

6

6π
(
3x2

3 − r2
)
Z2

6e−Z6r/3

ϕ3dz(x) =
2
81

√
Z3

6

2π
x1x2Z

2
6e−Z6r/3

ϕ3dm(x) =
1
81

√
Z3

6

2π
(
x2

1 − x2
2

)
Z2

6e−Z6r/3

ϕ3dx(x) =
2
81

√
Z3

6

2π
x2x3Z

2
6e−Z6r/3

ϕ3dy(x) =
2
81

√
Z3

6

2π
x1x3Z

2
6e−Z6r/3

ϕ4s(x) ∼
(

1− 3
4
e1r +

1
8
e2r

2 − 1
192

e3r
3

)
e−Z7r/4

(4.11)

The real constants c1, c2 and e1, e2, e3 are determined by the L2 orthonormal-
ization constraints of the orbitals. For the original orbitals (Zi → Z), these
constants are

c1 → Z, c2 → Z2, e1 → Z, e2 → Z2, e3 → Z3.

Note that all orbitals are chosen real to simplify computations.
A matrix representation of the L operator acting on the d-orbitals can be

calculated, e.g., by a computer algebra system4; let Pd be the projector on
(ϕ3d0, ϕ3dz, ϕ3dm, ϕ3dx, ϕ3dy), then one obtains

PdLPd =

 0
√

3 i
0 −i

0 i
−
√

3 i −i 0
i 0

 ,

 0 −
√

3 i
0 i

0 i
−i 0√

3 i −i 0

 ,

(
0

0 2 i
−2 i 0

0 i
−i 0

) .

The Matlab file periodic_table/calc_simLS.m of the FermiFab toolbox calcu-
lates the simultaneous L2, L3,S

2, S3, R eigenspaces of the input atom, w.l.o.g.
choosing L3 ≡ 0 and S3 maximal. It uses the method fermifab/simdiag.m
which implements the simultaneous diagonalization of commuting normal ma-
trices (Bunse-Gerstnert et al. 1993; Goldstine and Horwitz 1959). In our case,

4See periodic_table/symbolic_base/angularY2.nb.
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the parity quantum number yields no additional information since the 3d and 4s
orbitals are both of even parity. The results for the atoms potassium, calcium,
copper and zinc are shown in table 4.2. For brevity’s sake we haven’t printed
all transition metals.5

sym. L2 S2 S3 config. Ψ

K 2S 0 3
4

1
2 [Ar] 4s1 |s〉

2D 6 3
4

1
2 [Ar] 3d1 |d0〉

Ca 1S 0 0 0 [Ar] 4s2 |ss〉

[Ar] 3d2 1√
5

(∣∣d0d0

〉
+
∣∣dzdz〉+

∣∣dmdm〉
+
∣∣dxdx〉+

∣∣dydy〉)
3P 2 2 1 [Ar] 3d2 1√

5
(2 · |dzdm〉+ |dxdy〉)

1D 6 0 0 [Ar] 3d1 4s1 1√
2

(
|d0s〉 −

∣∣d0s
〉)

[Ar] 3d2 1√
14

(
−2 ·

∣∣d0d0

〉
+ 2 ·

∣∣dzdz〉+ 2 ·
∣∣dmdm〉

−
∣∣dxdx〉− ∣∣dydy〉)

3D 6 2 1 [Ar] 3d1 4s1 |d0s〉
3F 12 2 1 [Ar] 3d2 1√

5
(−|dzdm〉+ 2 · |dxdy〉)

1G 20 0 0 [Ar] 3d2 1√
70

(
6 ·
∣∣d0d0

〉
+
∣∣dzdz〉+

∣∣dmdm〉
−4 ·

∣∣dxdx〉− 4 ·
∣∣dydy〉)

Cu 2S 0 3
4

1
2 [Ar] 3d10 4s1

∣∣d0d0dzdzdmdmdxdxdydys
〉

2D 6 3
4

1
2 [Ar] 3d9 4s2

∣∣d0dzdzdmdmdxdxdydyss
〉

Zn 1S 0 0 0 [Ar] 3d10 4s2
∣∣d0d0dzdzdmdmdxdxdydyss

〉
Table 4.1: Simultaneous L2, L3,S

2, S3, R eigenspaces of K, Ca, Cu and Zn for
L3 ≡ 0 and maximal S3.

What remains is the evaluation of the Coulomb integrals

(ab | cd) :=
∫

R6
a(x1)b(x1)

1
|x1 − x2|

c(x2)d(x2) dx1x2 (4.12)

for the spatial orbitals (4.11). Concerning the spin of the wavefunctions, consider

ψi(x, s) = ϕi(x)αi(s), x ∈ R3, s ∈ {↑, ↓}

for i = 1, . . . , 4. Then with |ψiψj〉 = 1√
2

(ψi ⊗ ψj − ψj ⊗ ψi), we get〈
ψ1ψ2 |

1
|x1 − x2|

ψ3ψ4

〉
= (ϕ1ϕ3 |ϕ2ϕ4) 〈α1 |α3〉 〈α2 |α4〉
− (ϕ1ϕ4 |ϕ2ϕ3) 〈α1 |α4〉 〈α2 |α3〉 .

(4.13)

5These can be found in the periodic_table/tables subfolder of the FermiFab toolbox.
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We implement the ideas by Friesecke and Goddard (2008b) summarized
in the following lemma. For the Fourier transformation F of a function f ∈
L1 (Rn), use the convention

(Ff)(k) :=
∫

Rn
f(x)e−ik·x dx.

Lemma 21. For one-electron orbitals (ϕi) with ϕi and Fϕi ∈ L2
(
R3
)
∩

L∞
(
R3
)
, let f(x) := ϕi(x)ϕj(x) and g(x) := ϕk(x)ϕl(x). Then

(ϕiϕj |ϕkϕl) =
1

2π2

∫
R3

1
|k|2

(Ff) (k) (Fg) (k) d3k.

In what follow, we explain the details of the symbolic "computation pipeline".
For each q ∈ N3

0, concisely write

∂q

∂kq :=
3∏
i=1

∂qi

∂kqii
.

Let f(x) = ϕi(x)ϕj(x) as in lemma 21 with ϕi, ϕj from the set (4.11), then f
can be expanded as

f(x) =
6∑

n=0

rn

(
4∑

q1,q2,q3=0

cn,q ·
3∏
i=1

xqii

)
e−λr, r = |x|

with constants cn,q and λ > 0. This is implemented by symbolic_base/coulomb.nb.
Directly from the definition of the Fourier transform, it follows that

(Ff) (k) =
∑
n,q

cn,q (−1)n
∂n

∂λn
iq1+q2+q3

∂q

∂kq

(
Fe−λr

)
(k). (4.14)

One calculates (
Fe−λr

)
(k) =

8λπ
(λ2 + k2)2 ,

so precomputing6 the following integral over polar coordinates

Iq,q′(λ, λ′) := (−i)q1+q2+q3 iq
′
1+q′2+q′3

1
2π2

×
∫ ∞

0

∫ π

0

∫ 2π

0

(
∂q

∂kq

8λπ
(λ2 + k2)2

)(
∂q′

∂kq′
8λ′π

(λ′2 + k2)2

)
sinϑ dϕdϑ dk

with k ≡ |k| yields for the spatial orbitals

v̂ee,ijkl := (ϕiϕj |ϕkϕl) =
∑
n,n′

∑
q,q′

cn,q cn′,q′ ·

(−1)n+n′ ∂
n

∂λn
∂n
′

∂λ′n′
Iq,q′(λ, λ′).

6See the Mathematica file symbolic_base/precompute.nb.
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This (time consuming) computation is performed in symbolic_base/coulomb.nb,
which also handles the coefficients cn,q. Considering symmetry, it follows di-
rectly from definition (4.12) that (ab | cd) = (cd | ab). Furthermore, plugging
in the orbitals (4.11) and realizing that they are chosen real, we may also ex-
change a↔ b and c↔ d, i.e. we need only compute v̂ee,ijkl for (i, j) ≤ (k, l) in
lexicographical order.

Let Vee be the N -particle Coulomb operator obtained from the two-particle
operator vee, and χ, ψ wavefunctions in N -particle space, including spin. In-
dexing spatial orbitals (4.11) by i, j, k, l and the spin-part by α, β, γ, δ, we get a
spatial RDM mapping as follows.7

〈χ |Veeψ〉 = tr [Vee|ψ〉〈χ|] = tr∧2H
[
veeΓ|ψ〉〈χ|

]
=
∑
iα<kβ
jγ<lδ

〈iα, kβ | vee | jγ, lδ〉
〈
jγ, lδ |Γ|ψ〉〈χ| | iα, kβ

〉 (4.13)
=

=
∑
iα<kβ
jγ<lδ

(ij | kl)
〈
jα, lβ |Γ|ψ〉〈χ| | iα, kβ

〉
−
∑
iα<kβ
lβ<jα

(ij | kl)
〈
lβ, jα |Γ|ψ〉〈χ| | iα, kβ

〉
=
∑
ij,kl

(ij | kl)
∑
α,β

iα<kβ

〈
jα, lβ |Γ|ψ〉〈χ| | iα, kβ

〉
= tr

[
v̂ee Γ̂|ψ〉〈χ|

]

(4.15)

with (
Γ̂|ψ〉〈ϕ|

)
kl,ij

:=
∑
α,β

iα<kβ

〈
jα, lβ |Γ|ψ〉〈ϕ| | iα, kβ

〉
.

A similar equation can be obtained for single-particle operators. The crucial
feature is that Γ̂|ψ〉〈ϕ| is just an algebraic coefficient mapping and doesn’t depend
on the choice of the dilation parameters Zi, in particular if ψ and χ belong
to a degenerate L2, L3,S

2, S3, R-eigenspace. So Γ̂|ψ〉〈ϕ| can be precomputed
without any reference to the Hamiltonian at all. Instead, the dilation parameters
come in via the Couloumb integrals in v̂ee. So equation (4.15) speeds up the
energy minimization in periodic_table/levels_dil.m immensely since the most
time consuming part is plugging in the Zi.

Finally, the results for both "original" and "dilated" Hydrogen orbitals are
shown in figure 4.1. It follows from the min-max principle that the theoretical
model provides an upper bound on the actual ground state energy, which is in
perfect agreement with the obtained data. Table 4.2 contains the quantitative
deviation and shows that numerical optimization of the dilation parameters Zi
reduces the error to approximately a tenth.

Tables 4.2 and 4.2 confirm the predictive power of the FCI model. To obtain
the correct values for chromium and copper, too, one could include the 3s and
3p orbitals or even contributions from higher shells.

7Refer to mex/gen_rdm_coulomb.cpp for an implementation.

27



K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn
−5

−4.5

−4

−3.5

−3

−2.5

−2

−1.5

−1
x 10

4

atom

en
er

gy
 [e

V
]

Ground state energies of K − Zn
theory vs. experiment

 

 
PT model (original orbs)
FCI model (dilated orbs)
experiment

Figure 4.1: Ground state energy of K – Zn using original and dilated 3d, 4s
hydrogen orbitals (3s and 3p are assumed to be permanently filled). The theo-
retical FCI-model value for calcium is missing since the numeric minimization
routine reported "division by zero". The experimental ionization energies are
taken from Lide (2003).

atom K Ca Sc Ti V Cr
PT (original orbs) 11.1% 10.7% 11.1% 11.5% 11.9% 12.3%
FCI (dilated orbs) 0.9% n.a. 0.9% 1.0% 1.0% 1.1%

atom Mn Fe Co Ni Cu Zn
PT (original orbs) 12.7% 13.0% 13.5% 13.8% 14.2% n.a.
FCI (dilated orbs) 1.1% 1.2% 1.3% 1.4% 1.5% n.a.

Table 4.2: Relative ground state error of the PT and FCI models

atom K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

theory 2S n.a. 2D 3F 4F 5D 6S 5D 4F 3F 2D 1S

experiment 2S 1S 2D 3F 4F 7S 6S 5D 4F 3F 2S 1S

Table 4.3: Ground state symmetry quantum numbers, FCI model (dilated or-
bitals)
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atom K Ca Sc Ti V Cr
theory [Ar] 4s n.a. 3d 4s2 3d2 4s2 3d3 4s2 3d4 4s2

experiment [Ar] 4s 4s2 3d 4s2 3d2 4s2 3d3 4s2 3d5 4s

atom Mn Fe Co Ni Cu Zn
theory [Ar] 3d5 4s2 3d6 4s2 3d7 4s2 3d8 4s2 3d9 4s2 3d10 4s2

experiment [Ar] 3d5 4s2 3d6 4s2 3d7 4s2 3d8 4s2 3d10 4s 3d10 4s2

Table 4.4: Ground state configuration as predicted by the FCI model (dilated
orbitals)
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Chapter 5

Conclusion

The central new results in chapter 3 are the detailed spectral analysis of ΓΨ in
section 3.5 for small dimensions, and the pair structure inheritance in section 3.6.
There we have shown that a special pair structure of the two-body interaction
Hamiltonian h translates to the eigenfunctions of the N -body Hamiltonian and
thus reduces the system complexity significantly. Due to the Coleman expansion
theorem, this structure can always be assumed if, e.g., h has rank 1 . We hope
that eventually an effective "single-pair-particle" Hamiltonian can be derived –
similar to Cooper pairs of electrons.

In chapter 4 we have extended the calculations by Friesecke and Goddard
(2008b,a) to transition metals. Due to the increasing complexity, we have devel-
oped an automated "symbolic computation pipeline" comprising Mathematica,
Matlab and – via the symbolic toolbox – Maple. Thus we have been able to verify
the calculations of Friesecke and Goddard (2008b) and compare the predictions
of the FCI model for transition metals with experimental data in section 4.2.
We observe inter alia that the ground state 3d vs. 4s occupation is captured
correctly for all investigated elements, except for copper and chromium.

Since we have mainly focused on the FCI model, what remains open to fur-
ther research is the application of the PT model to the rest of the periodic table.
As long as the nuclear charge is fairly small, i.e., relativistic effects are still negli-
gible, theorem 20 (Friesecke and Goddard 2008b) provides a calculation scheme
for the angular momentum and spin quantum numbers of the ground state for
sufficiently large Z. Thus we hope that eventually, a deeper understanding of
the periodic table based on ab inito principles can be attained.
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Appendix A

Basic Properties of Integral
Operators

Theorem 22. Let (Ω,A, µ) be a σ-finite measure space and γ ∈ L2(Ω× Ω,C)
such that γ(x, y) = γ(y, x) ∀x, y ∈ Ω. Then

Γ : L2(Ω,C)→ L2(Ω,C), (Γϕ)(x) :=
∫
γ(x, y)ϕ(y) dy

is linear, compact and self-adjoint.

Proof. Γ is well-defined: by a theorem of measure and integration theory,

γx : y 7→ γ(x, y) ∈ L2(Ω,C)

for almost all x ∈ Ω. Using the inner product of L2(Ω,C), we may write

(Γϕ)(x) = 〈γx |ϕ〉 .

Thus∫
|(Γϕ)(x)|2 dx ≤

∫
‖γx‖2 ‖ϕ‖2 dx =

(∫ ∫
|γ(x, y)|2 dy dx

)
‖ϕ‖2 <∞.

Γ is compact: let (ϕi)i∈N be a bounded sequence in L2(Ω,C). Then there
exists a weakly convergent subsequence (also denoted by (ϕi)), i.e. ϕi ⇀ ϕ ∈
L2(Ω,C). Therefore

(Γϕi)(x) = 〈γx |ϕi〉 → 〈γx |ϕ〉 = (Γϕ)(x) for almost all x ∈ Ω.

Choose M ∈ R such that ‖ϕi‖ ≤M for all i ∈ N, then

|(Γϕi)(x)| = |〈γx |ϕi〉| ≤M · ‖γx‖ ∈ L2(Ω,C).

The theorem of dominated convergence now yields Γϕi
L2

→ Γϕ.
Γ is self-adjoint: for all ϕ,ψ ∈ L2(Ω,C) we have

〈ψ |Γϕ〉 =
∫ ∫

ψ(x)γ(x, y)ϕ(y) dy dx =
∫ ∫

γ(y, x)ψ(x)ϕ(y) dx dy = 〈Γψ |ϕ〉 .
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Now, let further L2(Ω,C) be separable, e.g. (Ω,A, µ) = (RN ,B, λ).

Proposition 23. Let Γ be positive semidefinite. Then

tr Γ =
∫
γ(x, x) dx ∈ [0,∞].

Proof. By the spectral theorem for compact, self-adjoint operators, Γ has a com-
plete orthonormal system (ψi)i∈N of eigenvectors with corresponding eigenvalues
λi ∈ R. That is,

Γϕ =
∑
i

λi 〈ψi |ϕ〉ψi ∀ϕ ∈ L2(Ω,C), and

γx =
∑
i

〈ψi | γx〉ψi =
∑
i

(Γψi)(x)ψi =
∑
i

λi ψi(x)ψi, i.e.

γ(x, y) = γx(y) =
∑
i

λi ψi(x)ψi(y).

As Γ is positive semidefinite, λi ≥ 0 ∀i ∈ N; thus the theorem of monotone
convergence yields

tr Γ =
∑
i

λi =
∫ ∑

i

λi |ψi(x)|2 dx =
∫
γ(x, x) dx.
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Appendix B

The Tensor Product of
Hilbert Spaces

Let H1 and H2 be Hilbert spaces over K = R or C and u ∈ H1, v ∈ H2. Define

(u⊗ v) (w, z) := 〈w |u〉 〈z | v〉 for all w ∈ H1, z ∈ H2.

u ⊗ v is a conjugate bilinear form on H1 ×H2. Note that u ⊗ v equals u′ ⊗ v′
if and only if the corresponding forms are identical and that ⊗ behaves like a
product, i.e.

(αu+ u′)⊗ v = α (u⊗ v) + (u′ ⊗ v) , α ∈ K

and similarly for u⊗ (αv + v′). Denote the set of all finite linear combinations
of such forms by (H1 ⊗H2)pre. This becomes a pre-Hilbert space with the inner
product

〈u⊗ v |w ⊗ z〉 := 〈u |w〉 〈v | z〉 = (w ⊗ z) (u, v) ,

extending linearly. To show that this definition doesn’t depend on the choice of
representatives, first let µ be a finite linear combination which is the zero form.
Then

〈u⊗ v |µ〉 = µ (u, v) = 0 for all u ∈ H1, v ∈ H2

and by linearity 〈λ |µ〉 = 0 for all λ ∈ (H1 ⊗H2)pre. Given finite sums λ, λ′, µ, µ′
with λ = λ′ and µ = µ′, we now have

〈λ |µ〉 − 〈λ′ |µ′〉 = 〈λ |µ− µ′〉+ 〈µ′ |λ− λ′〉 = 0.

Finally, we show that the inner product is positive definite. Suppose

λ =
N∑
i=1

αi (ui ⊗ vi) , ui ∈ H1, vi ∈ H2.

Let (wi)i and (zi)i be finite orthonormal bases of span{ui}i=1...N and span{vi}i=1...N ,
respectively. Expressing each ui in terms of the wi’s and each vi in terms of the
zi’s, we obtain

λ =
∑
i,j

βij (wi ⊗ zj) .
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Thus
〈λ |λ〉 =

∑
i,j,k,m

βijβkm 〈wi |wk〉 〈zj | zm〉 =
∑
i,j

|βij |2 ≥ 0,

and 〈λ |λ〉 = 0 if and only if λ = 0.

Definition 24. Let H1 and H2 be Hilbert spaces over K. The tensor product
H1 ⊗H2 is the completion of (H1 ⊗H2)pre.

Theorem 25. If (ui)i∈N and (vi)i∈N are complete orthonormal systems in the
Hilbert spaces H1 and H2 respectively, then (ui ⊗ vj)i,j∈N is a complete or-
thonormal system in H1 ⊗H2.

Proof. (ui ⊗ vj)i,j∈N is orthonormal, so what remains to be shown is complete-
ness, i.e. span(ui ⊗ vj)i,j∈N is dense in H1 ⊗ H2. It is sufficient to proof that
(H1 ⊗H2)pre is contained in the closure of this span. Let u ∈ H1, v ∈ H2. We
have

u =
∞∑
i=1

〈ui |u〉︸ ︷︷ ︸
αi

ui, v =
∞∑
i=1

〈vi | v〉︸ ︷︷ ︸
βi

vi.

Since
∑
i,j |αiβj |

2 =
∑
i |αi|

2∑
j |βj |

2
<∞, the infinite series

λ := lim
N→∞

N∑
i,j=1

αiβj (ui ⊗ vj)

converges in H1 ⊗H2, and∥∥∥∥∥∥(u⊗ v)−
N∑

i,j=1

αiβj (ui ⊗ vj)

∥∥∥∥∥∥
2

= ‖u‖2 ‖v‖2 −
N∑

i,j=1

|αiβj |2 → 0.

We want to rigorously justify the "natural" isomorphism between L2-spaces
as follows.

Theorem 26. Given two σ-finite measure spaces (Ω1,A1, µ1), (Ω2,A2, µ2) and
assuming that the Hilbert spaces L2(Ω1, µ1) and L2(Ω2, µ2) are separable, there
exists an isomorphism

U : L2(Ω1, µ1)⊗ L2(Ω2, µ2)→ L2(Ω1 × Ω2, µ1 ⊗ µ2)

so that

(Uf ⊗ g) (x, y) = f(x)g(y) for all f ∈ L2(Ω1, µ1), g ∈ L2(Ω2, µ2). (B.1)

Proof. Let (ϕi)i∈N and (ψi)i∈N be complete orthonormal systems in L2(Ω1, µ1)
and L2(Ω2, µ2), respectively. Then (ϕi(x)ψj(y))i,j∈N is a complete orthonormal
system in L2(Ω1 × Ω2, µ1 ⊗ µ2). The orthonormality is obvious, and the com-
pleteness can be seen as follows: let h ∈ L2(Ω1×Ω2, µ1⊗ µ2) and suppose that
for all i, j ∫

Ω1×Ω2

ϕi(x)ψj(y)h(x, y) dx dy = 0,
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i.e. ∫
Ω1

ϕi(x)
(∫

Ω2

ψj(y)h(x, y) dy
)

dx = 0.

Since (ϕi)i is complete, this means that up to a set of measure zero, the inner
integral is zero for all x ∈ Ω1. Since (ψi)i is also complete, h(x, y) = 0 almost
everywhere.

Now define U by

(Uϕi ⊗ ϕj) (x, y) := ϕi(x)ψj(y).

U is a mapping between orthonormal systems and hence unitary. Note that we
recover equation (B.1).

The tensor product
H1 ⊗ · · · ⊗ Hn

of finitely many Hilbert spaces is a canonical extension of the above definitions.

In quantum mechanics, the Pauli exclusion principle states that multiple
identical Fermions may not occupy the same state simultaneously. This trans-
lates to the antisymmetrization of wave functions.

Standard Example 27. Let (ui)i∈N be a complete orthonormal system in the
Hilbert space H. For each permutation σ ∈ Sn, define an unitary operator given
on basis elements of ⊗nH by

σ (ui1 ⊗ · · · ⊗ uin) := uiσ(1) ⊗ · · · ⊗ uiσ(n) .

The n-fold antisymmetric tensor product ∧nH of H is the image of the orthog-
onal projection

An :=
1
n!

∑
σ∈Sn

sgn(σ)σ.

Note that ∧nH is itself a Hilbert space. Set

ui1 ∧ · · · ∧ uin :=
√
n!An (ui1 ⊗ · · · ⊗ uin) ,

then (ui1 ∧ · · · ∧ uin)i1<i2<···<in is a complete orthonormal system in ∧nH. In
the special case where H = L2(Ω, µ) and (Ω,A, µ) is σ-finite, ∧nH is the set of
all antisymmetric L2-functions, i.e.

∧nH ' L2(Ωn,⊗nµ)anti :={
ϕ ∈ L2(Ωn,⊗nµ) : ϕ(. . . , xi, . . . , xj , . . . )

= −ϕ(. . . , xj , . . . , xi, . . . ) ∀i 6= j
}

It is obvious that σ is unitary as it permutes the orthonormal system
(ui1 ⊗ · · · ⊗ uin)i1,...in∈N. We show that σ is independent of the choice of (ui)i.
Let v1, . . . , vn ∈ H and set αij := 〈ui | vj〉. Then

〈ui1 ⊗ · · · ⊗ uin | v1 ⊗ · · · ⊗ vn〉 = αi11 · · ·αinn
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and hence

σ (v1 ⊗ · · · ⊗ vn) =
∑

i1,...,in

αi11 · · ·αinn · uiσ(1) ⊗ · · · ⊗ uiσ(n)

=
∑

i1,...,in

αi1σ(1) · · ·αinσ(n) · ui1 ⊗ · · · ⊗ ui2

= vσ(1) ⊗ · · · ⊗ vσ(n).

It is easy to see that An is a linear, continuous, self-adjoint operator, and from
σAn = sgn(σ)An we get A2

n = An, so An is an orthogonal projection. Note that

span{An (ui1 ⊗ · · · ⊗ uin)}i1,...,in∈N

is dense in ∧nH and (Anσ) (ui1 ⊗ · · · ⊗ uin) = sgn(σ)An (ui1 ⊗ · · · ⊗ uin). We
remark that for another orthonormal system (vi)i∈N, the inner product has a
special form:

〈v1 ∧ · · · ∧ vn |u1 ∧ · · · ∧ un〉
= n! 〈v1 ⊗ · · · ⊗ vn |An(u1 ⊗ · · · ⊗ un)〉

=
∑
σ∈Sn

sgn(σ)
n∏
α=1

〈
vα |uσ(α)

〉
= det 〈vα |uβ〉α,β .

If H = L2(Ω, µ), theorem 26 states

⊗nH ' L2(Ωn,⊗nµ);

for each ϕ ∈ L2(Ωn,⊗nµ), a basis expansion shows that

(Anϕ) (x1, . . . , xn) =
1
n!

∑
σ∈Sn

sgn(σ)ϕ
(
xσ(1), . . . , xσ(n)

)
,

so Anϕ is antisymmetric. Conversely, if ϕ is antisymmetric, then it’s left invari-
ant by An.

Proposition 28. Let (ui)i∈N be a complete orthonormal system in the Hilbert
space H and U : H → H an unitary operator. Then the operator (again denoted
by U) given on basis elements of ⊗nH by

U (ui1 ⊗ · · · ⊗ uin) := (Uui1)⊗ · · · ⊗ (Uuin)

is unitary and leaves ∧nH invariant.

Proof. It follows directly from the definitions that U : span{ui1 ⊗ · · · ⊗ uin}i1,...,in →
span{Uui1 ⊗ · · · ⊗ Uuin}i1,...,in is bijective and preserves norms. That is, U
extends uniquely to an unitary operator U : ⊗nH → ⊗nH. Furthermore
AnU = UAn as

AnU (ui1 ⊗ · · · ⊗ uin)

=
1
n!

∑
σ∈Sn

sgn(σ)Uuiσ(1) ⊗ · · · ⊗ Uuiσ(n)

= UAn (ui1 ⊗ · · · ⊗ uin) .

From that it follows that the restriction U: ∧nH → ∧nH on the Hilbert space
∧nH is also unitary.
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We investigate vector-valued functions and their connection with tensor
products.

Definition 29. Let (Ω,A, µ) be a measure space and H′ a separable Hilbert
space. A function f : Ω→ H′ is called measurable if and only if x 7→ 〈y | f(x)〉
is measurable for each y ∈ H′. We set

L2(Ω, µ;H′) :=
{
f : Ω→ H′ : f measurable,

∫
Ω

‖f(x)‖2 dx <∞
}
.

We have to justify that ‖f(x)‖2 is measurable. Let (ui)i be a complete
orthonormal system in H′. Then by definition, x 7→ 〈ui | f(x)〉 is measurable
and hence also

x 7→ ‖f(x)‖2 =
∑
i

|〈ui | f(x)〉|2 .

Note that since an inner product can be expressed by norms, x 7→ 〈f(x) | g(x)〉
is also measurable for all f, g ∈ L2(Ω, µ;H′).

Proposition 30. L2(Ω, µ;H′) given above is a Hilbert space with the inner
product

〈f | g〉 :=
∫

Ω

〈f(x) | g(x)〉 dx.

Proof. Most results obtained for L2(Ω, µ) generalize literally to L2(Ω, µ;H′),
especially the theorem by F. Riesz and E. Fischer which states the completeness
of L2(Ω, µ). In this connection, e.g. note that given a sequence (ui)i in H′ with∑∞
i=1 ‖ui‖ <∞, the sequence of partial sums

sn :=
n∑
i=1

ui

converges in H′ since it is a Cauchy sequence:

‖sn+k − sn‖ =

∥∥∥∥∥
n+k∑
i=n+1

ui

∥∥∥∥∥ ≤
n+k∑
i=n+1

‖ui‖ → 0 as n→∞.

Thus we have generalized the well-known classical result on C that each abso-
lutely convergent series is convergent.

Theorem 31. Let (Ω,A, µ) be a measure space such that L2(Ω, µ) is separable
and let H′ be a separable Hilbert space. Then there exists an isomorphism

U : L2(Ω, µ)⊗H′ → L2(Ω, µ;H′)

such that

(Uf ⊗ u)(x) = f(x)u for all f ∈ L2(Ω, µ), u ∈ H′.

Proof. Choose complete orthonormal systems (ϕi)i∈N and (ui)i∈N of L2(Ω, µ)
and H′, respectively. Obviously, (ϕiuj)i,j is orthonormal; we show that it’s also
complete. Given f ∈ L2(Ω, µ;H′), let

hj ∈ L2(Ω, µ), hj(x) := 〈uj | f(x)〉
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and αij := 〈ϕiuj | f〉 = 〈ϕi |hj〉. Then by the theorem of monotone convergence,∑
i,j

|αij |2 =
∑
j

‖hj‖2 =
∫

Ω

∑
j

|hj(x)|2 dx

=
∫

Ω

∑
j

|〈uj | f(x)〉|2 dx =
∫

Ω

‖f(x)‖2 dx = ‖f‖2 <∞

and hence
∑∞
i,j=1 αijϕiuj converges in L

2(Ω, µ;H′). Furthermore,∥∥∥∥∥∥f −
N∑

i,j=1

αijϕiuj

∥∥∥∥∥∥
2

= ‖f‖2 −
N∑

i,j=1

|αij |2 → 0 as N →∞.

Now define U by
(Uϕi ⊗ uj) (x) := ϕi(x)uj ,

which maps an orthonormal system to an orthonormal system and hence extends
uniquely to an unitary operator.
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Appendix C

Second Quantization for
Fermions

C.1 Introduction
The common term "Second Quantization" is somewhat misleading as it is just
an efficient formalism for many-particle systems. Here we will consider fermions
only (spin 1/2 particles). The spin-statistic theorem of relativistic quantum
field theory states that fermions must be antisymmetric, i.e. the wave function
changes sign under exchange of two identical particles.

C.2 Preliminaries
Let H be a Hilbert space and ⊗NH the Hilbert space tensor product. ∧NH is
the image of the orhogonal projection defined by

AN (ϕ1 ⊗ · · · ⊗ ϕN ) :=
1
N !

∑
σ∈SN

sgn(σ)ϕσ(1) ⊗ · · · ⊗ ϕσ(N)

(i.e. AN is a linear, continuous, self-adjoint operator with A2
N = AN ). Physically

speaking, ∧NH is the space where the antisymmetric many-particle function
lives.

By definition, a Slater determinant is of the form

ϕ1 ∧ · · · ∧ ϕN :=
√
N !AN (ϕ1 ⊗ · · · ⊗ ϕN ) ,

where ϕ1, . . . ϕN ∈ H. If 〈ϕα |ϕβ〉 = δαβ , then it will be normalized.
Since A∗N = AN and A2

N = AN , the following holds:

〈ϕ1 ∧ · · · ∧ ϕN |ψ1 ∧ · · · ∧ ψN 〉
= N ! 〈ϕ1 ⊗ · · · ⊗ ϕN |AN (ψ1 ⊗ · · · ⊗ ψN )〉

=
∑
σ∈SN

sgn(σ)
N∏
α=1

〈
ϕα |ψσ(α)

〉
= det 〈ϕα |ψβ〉α,β .
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Remark: Let (ϕi)i be a complete orthonormal system of H. Then

(ϕi1 ∧ · · · ∧ ϕiN )i1<i2<···<iN

is a complete orthonormal system of ∧NH.

C.3 Creation and annihilation operators
Let (ϕi)i be a complete orthonormal system in the Hilbert space H. When
appropriate, we set |i〉 = ϕi. Furthermore, let ϕ,ψ ∈ H and assume that
ψ1, . . . , ψN ∈ H are orthonormal. We define a creation operator by

a†ϕ ψ1 ∧ · · · ∧ ψN := ϕ ∧ ψ1 ∧ · · · ∧ ψN ,

extending linearly. The adjoint "annihilation" operator is then

aϕ ψ1 ∧ · · · ∧ ψN :=
N∑
α=1

(−1)α+1 〈ϕ |ψα〉ψ1 ∧ . . . ψα−1 ∧ ψα+1 · · · ∧ ψN .

This can be seen from the column expansion theorem for determinants:〈
ψ1 ∧ · · · ∧ ψN | a†ϕ χ1 ∧ · · · ∧ χN−1

〉
=

N∑
γ=1

(−1)γ+1 〈ψγ |ϕ〉det 〈ψα |χβ〉α6=γ,β

= 〈aϕ ψ1 ∧ · · · ∧ ψN |χ1 ∧ · · · ∧ χN−1〉 .

From a physical point of view, these operators increase/decrease the particle
number by one. We write a†i := a†ϕi and ai := aϕi . The anticommutator
brackets yield

{aϕ, aψ} = 0,
{
a†ϕ, a

†
ψ

}
= 0,

{
aϕ, a

†
ψ

}
= 〈ϕ |ψ〉 .

The "occupation number operator" for the state ϕ,

n̂ϕ := a†ϕaϕ,

derives its name from the following property:

n̂ϕjϕi1 ∧ · · · ∧ ϕiN =
{

1 j ∈ {i1, . . . , iN}
0 otherwise

Given the operator T : H → H, we want to rewrite

T̃ =
N∑
α=1

Tα (Tα acting on the α-th particle)
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in terms of creation and annihilation operators.(
N∑
α=1

|ϕ〉α〈χ|α

)
ψ1 ∧ · · · ∧ ψN

=
N∑
α=1

〈χ |ψα〉 (−1)α+1a†ϕ ψ1 ∧ . . . ψα−1 ∧ ψα+1 · · · ∧ ψN

= a†ϕaχ ψ1 ∧ · · · ∧ ψN , i.e.
N∑
α=1

|ϕ〉α〈χ|α = a†ϕaχ,

so we have

T̃ =
N∑
α=1

∑
i,j

〈i |T j〉 |i〉α〈j|α =
∑
i,j

〈i |T j〉 a†iaj .

In order to handle two-particle interactions, we first define pair creation and
annihilation operators by

a†ϕ∧ψ := a†ϕa
†
ψ, extending to a†ϕ1∧ψ1+c ϕ2∧ψ2

= a†ϕ1∧ψ1
+ c a†ϕ2∧ψ2

aϕ∧ψ :=
(
a†ϕ∧ψ

)∗
= aψaϕ.

Now use δkj =
{
ak, a

†
j

}
to get∑

α 6=β

|i〉α|j〉β〈k|α〈l|β =
∑
α6=β

|i〉α〈k|α|j〉β〈l|β

=
∑
α,β

|i〉α〈k|α|j〉β〈l|β − δkj
∑
α

|i〉α〈l|α

= a†iaka
†
jal − a

†
i

{
ak, a

†
j

}
al = −a†ia

†
jakal

= a†i∧jak∧l.

Given a pair operator V , applying the above result yields

Ṽ :=
1
2

∑
α6=β

Vα,β

=
1
2

∑
α6=β

∑
i,j,k,l

〈i⊗ j |V k ⊗ l〉 |i〉α|j〉β〈k|α〈l|β

=
1
2

∑
i,j,k,l

〈i⊗ j |V k ⊗ l〉 a†i∧jak∧l

=
1
2

∑
i<j, k<l

〈i⊗ j − j ⊗ i |V (k ⊗ l − l ⊗ k)〉 a†i∧jak∧l

=
∑

i<j, k<l

〈i ∧ j |V k ∧ l〉 a†i∧jak∧l,

that is, given a complete orthonormal system (χi)i in ∧2H,

Ṽ =
∑
i,j

〈χi |V χj〉 a†χiaχj .
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Let’s investigate the special case

V = |χ〉〈χ|, χ ∈ ∧2H :

Ṽ =
∑
i

〈χi |χ〉 a†χi
∑
j

〈χ |χj〉 aχj = a†χaχ ≡ n̂χ.

Note that the pair operators have bosonic character. A short computation
shows that [

a†i∧j , a
†
k∧l

]
= 0,

and, taking the adjoints,
[ai∧j , ak∧l] = 0.

Using [
ai, a

†
ka
†
l

]
= aia

†
ka
†
l − a

†
ka
†
l ai = δika

†
l − δila

†
k,

we get[
ai∧j , a

†
k∧l

]
=
[
ajai, a

†
ka
†
l

]
= δikaja

†
l − δilaja

†
k + δjka

†
l ai − δjla

†
kai.

Given an unitary operator U : H → H, we obtain an unitary operator (also
denoted by U) acting on ∧NH by

U (ψ1 ∧ · · · ∧ ψN ) := (Uψ1) ∧ · · · ∧ (UψN ) .

From (
U∗a†UϕU

)
(ψ1 ∧ · · · ∧ ψN ) = U∗ (Uϕ ∧ Uψ1 ∧ · · · ∧ UψN )

= ϕ ∧ ψ1 ∧ · · · ∧ ψN

we get
U∗a†UϕU = a†ϕ

for all ϕ ∈ H, and, taking the adjoint,

U∗aUϕU = aϕ.

The canonical generalization to p-body creation and annhihilation operators
is as follows:

a†i1∧···∧ip+c·j1∧···∧jp := a†i1 · · · a
†
ip

+ c · a†j1 · · · a
†
jp
,

ai1∧···∧ip+c·j1∧···∧jp :=
(
a†i1∧···∧ip+c·j1∧···∧jp

)∗
= aip · · · ai1 + c · ajp · · · aj1 .

Given χ ∈ ∧pH, we set
n̂χ := a†χaχ.

This relates to the single-particle occupation numbers as follows:

n̂i1∧···∧ip = a†i1 · · · a
†
ip
aip · · · ai1 = n̂i1 · · · n̂ip .
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For the last expression we have used the anticommutator relations. Let (χi)i
be a complete orthonormal system in ∧pH and fix the particle number N ≥ p
(that is, we operate on ∧NH). Then∑

i

n̂χi =
(
N

p

)
· id∧NH.

This can be seen by a Slater determinant expansion.
We reproduce an interesting result concerning commutator relations. Let

S =
∑
i,j

sij a
†
iaj , T =

∑
i,j

tij a
†
iaj ,

then an explicit calculation shows that

[S, T ] =
∑
i,j

[s, t]ij a
†
iaj .

In particular, if s commutes with t then S and T commute as well. This is a
rigorous proof of the intuitive fact that commuting single-particle operators also
commute when applied to a many-particle system.

C.4 L2 wave functions
In physics, the most widely used Hilbert spaces are L2 spaces. (And in fact,
each finite-dimensional or separable Hilbert space is isomorphic to a L2 space.)
In this chapter we rewrite the creation and annihilation operators in terms of
integrals, which are the building blocks of L2-spaces.

Given a measure space (Ω,A, µ) and H = L2(Ω,C), the wedge product is
similar to the antisymmetrized product space, i.e.

∧NH ' L2
anti(Ω

N ,C) :={
Ψ ∈ L2(ΩN ,C) : Ψ(. . . , xi, . . . , xj , . . . )

= Ψ(. . . , xj , . . . , xi, . . . ) ∀i 6= j
}
.

The creation and annihilation operators are given by

(
a†ϕΨ

)
(x1, . . . , xN+1) =

1√
N + 1

N+1∑
α=1

(−1)α+1ϕ(xα)×

Ψ(x1, . . . , xα−1, xα+1, . . . , xN+1) ∀ϕ ∈ H, Ψ ∈ ∧NH

and
(aϕΨ) (x1, . . . , xN−1) =

√
N

∫
Ω

ϕ(x)Ψ(x, x1, . . . , xN−1) dx.
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This can be directly derived from the definition. Let Ψ = ψ1 ∧ · · · ∧ ψN .(
a†ϕΨ

)
= ϕ ∧ ψ1 ∧ · · · ∧ ψN
= (−1)Nψ1 ∧ · · · ∧ ψN ∧ ϕ

= (−1)N
1√
N + 1

N+1∑
α=1

ϕ(xα)
1√
N !

∑
σ∈SN+1
σ(α)=N+1

sgn(σ)×

ψσ(1)(x1) · · ·ψσ(α−1)(xα−1) · ψσ(α+1)(xα+1) · · ·ψσ(N+1)(xN+1)

= (−1)N
1√
N + 1

N+1∑
α=1

ϕ(xα)
1√
N !

(−1)N+1−α
∑
τ∈SN

sgn(τ)×

ψτ(1)(x1) · · ·ψτ(α−1)(xα−1) · ψτ(α)(xα+1) · · ·ψτ(N)(xN+1)

=
1√
N + 1

N+1∑
α=1

(−1)α+1ϕ(xα)Ψ(x1, . . . , xα−1, xα+1, . . . , xN+1).

An explicit calculation based on〈
Ψ | a†ϕΦ

〉
= 〈aϕΨ |Φ〉

gives the formula for aϕΨ.
Let χ = ϕ ∧ ψ ∈ ∧2H, then by definition aχ = aψaϕ, so

(aχΨ)(x1, . . . , xN−2)

=
√
N − 1

∫
Ω

ψ(y) (aϕΨ) (y, x1, . . . , xN−2) dy

=
√
N(N − 1)

∫
Ω

∫
Ω

1
2

[
ϕ(x)ψ(y)− ϕ(y)ψ(x)

]
Ψ(x, y, x1, . . . , xN−2) dxdy

=
(
N

2

) 1
2
∫

Ω

∫
Ω

χ(x, y)Ψ(x, y, x1, . . . , xN−2) dx dy.

A short calculation shows that

(
a†χΨ

)
(x1, . . . , xN+2) =

(
N + 2

2

)− 1
2 N+2∑
α,β=1
α<β

(−1)α+β+1 χ(xα, xβ)×

Ψ(x1, . . . , xα−1, xα+1, . . . , xβ−1, xβ+1, . . . , xN+2).

This can easily be generalized to p-body creation and annihilation operators,
for example, for χ ∈ ∧pH and Ψ ∈ ∧NH,

(aχΨ) (x1, . . . , xN−p) =
(
N

p

) 1
2
∫

Ωp
χ(x′1, . . . , x′p)Ψ(x′1, . . . , x

′
p, x1, . . . , xN−p) dx′1 . . . dx′p.
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Appendix D

An Algebraic Approach

D.1 Basic setup
In this chapter we start from a purely algebraic approach to antisymmetrized
many-particle Hilbert spaces.

Definition 32. Let K ∈ N≥1 and H be a K-dimensional complex Hilbert
space, where we denote an orthonormal basis by |s〉, s = 1, . . . ,K. The anti-
symmetrized many-particle Hilbert space is defined by

∧H := span {|S〉 : S ⊆ {1, . . . ,K}} =

{∑
S

αS |S〉 : αS ∈ C

}
,

i.e. the subsets of {1, . . . ,K} serve as orthonormal basis. For p ∈ {0, 1, . . . ,K},
the antisymmetrized p-particle Hilbert space is

∧pH := span {|S〉 : S ⊆ {1, . . . ,K}, |S| = p} .

Note that H = ∧1H and ∧pH is naturally embedded in ∧H.
Given two disjoint subsets S = {i1, . . . , in} and T = {in+1, . . . , im} with

i1 < i2 < · · · < in and in+1 < · · · < im, let σ be the permutation of {1, . . . ,m}
such that iσ(1) < iσ(2) < · · · < iσ(m). Set

sgn(S, T ) :=
{

sgn(σ), if S ∩ T = ∅
0, otherwise

An immediate consequence is the following:

sgn(S, T ) = (−1)|S|·|T | sgn(T, S) ∀S, T ⊆ {1, . . . ,K}.

Definition 33. Define so-called creation operators acting on basis vectors of
∧H by a†|S〉|T 〉 := sgn(S, T ) |S ∪ T 〉, extending linearly in |S〉 and |T 〉. The
adjoint aϕ :=

(
a†ϕ
)∗ (ϕ ∈ ∧H) is called annihilation operator and is antilinear

in ϕ. Explicitly,

a|S〉|T 〉 =
{

sgn(S, T\S) |T\S〉, if S ⊆ T
0, otherwise

Furthermore, set
nϕ := a†ϕaϕ and cϕ := aϕa

†
ϕ.
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Corollary 34. For all S, T ⊆ {1, . . . ,K} we have

n|S〉|T 〉 =
{
|T 〉, S ⊆ T
0, otherwise and c|S〉|T 〉 =

{
|T 〉, T ∩ S = ∅
0, otherwise

so n|S〉 and c|S〉 are projections, and the corresponding subspaces are orthogonal
if S 6= ∅. Note that n|∅〉 = c|∅〉 = id∧H.
For all i ∈ {1, . . . ,K},

n|i〉 + c|i〉 = id∧H.

An explicit (tedious) calculation using basic facts about permutations shows
the following relations:

Proposition 35. For all S, T ⊆ {1, . . . ,K},

a†|S〉|T 〉 = (−1)|S|·|T | a†|T 〉|S〉,

a†|S〉a
†
|T 〉 = sgn(S, T ) a†|S∪T 〉,

a|S〉a
†
|T 〉 = (−1)|S|·|T | a†|T 〉a|S〉 if S ∩ T = ∅,

a|S〉a
†
|T 〉 = sgn(S ∩ T, T\S) sgn(S ∩ T, S\T ) a|S\T 〉 a

†
|T\S〉 c|S∩T 〉,

a†|T 〉a|S〉 = (−1)|S∩T |·|S∆T | sgn(S ∩ T, T\S) sgn(S ∩ T, S\T ) a†|T\S〉 a|S\T 〉 n|S∩T 〉.

Corollary 36. Let ϕ ∈ ∧pH and ψ ∈ ∧qH. Then[
a†ϕ, a

†
ψ

]
= 0, [aϕ, aψ] = 0 if pq is even, and{

a†ϕ, a
†
ψ

}
= 0, {aϕ, aψ} = 0 if pq is odd.

Let S, T ⊆ {1, . . . ,K} such that S ∩ T = ∅. Then[
a|S〉, a

†
|T 〉

]
= 0 if |S| · |T | is even,{

a|S〉, a
†
|T 〉

}
= 0 if |S| · |T | is odd.

D.2 Invariance under single-particle base changes
Definition 37. For any unitary operator U ∈ B(H), let U⊗ be the unitary
operator acting on ∧H by

U⊗|i1, . . . , ip〉 := a†U |i1〉 · · · a
†
U |ip〉|∅〉

for all 1 ≤ i1 < · · · < ip ≤ K.

Note that this corresponds to a renaming of the basis elements |1〉, . . . , |K〉
of H.

Proposition 38. Let U ∈ B(H) be unitary. Then for all ϕ ∈ ∧H,(
U⊗
)∗
a†U⊗ϕU

⊗ = a†ϕ,

and – taking the adjoint – (
U⊗
)∗
aU⊗ϕU

⊗ = aϕ.
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D.3 Reduced density matrices
We can now re-define reduced density matrices, acting on the whole many-
particle space ∧H.

Definition 39. Given Ψ ∈ ∧H, ‖Ψ‖ = 1, its reduced density matrix is the
linear operator γΨ acting on ∧H by

〈χ | γΨϕ〉 := 〈aϕΨ | aχΨ〉 =
〈
Ψ | a†ϕaχΨ

〉
.

As an immediate consequence, γΨ is positive semidefinite and self-adjoint.

Proposition 40. Let additionally Ψ ∈ ∧NH for fixed N . Then tr γΨ = 2N ,
and for any p, γΨ leaves ∧pH invariant, with tr∧pH γΨ =

(
N
p

)
.

Proof. Just note that for all T ,
∑
S⊆{1,...,K} n|S〉|T 〉 = ”number of subsets of T” =

2|T |, and
∑
|S|=p n|S〉|T 〉 =

(|T |
p

)
.

For ϕ =
∑
S⊆{1,...,K} αS |S〉 (αS ∈ C) we set ϕ :=

∑
S⊆{1,...,K} αS |S〉, i.e.

the complex conjugate of the coefficients in the standard basis expansion.
Let again be Ψ ∈ ∧H, ‖Ψ‖ = 1, and define a linear operator Ψ̂ given on

basis elements by Ψ̂|S〉 := a|S〉Ψ. Note that due to the antilinearity of the
annihilation operator, we have Ψ̂ϕ = aϕΨ. Now observe the following: for all
S, T ⊆ {1, . . . ,K},〈
T | Ψ̂S

〉
=
〈
T | a|S〉Ψ

〉
=
〈
a†|S〉T |Ψ

〉
= (−1)|S|·|T |

〈
a†|T 〉S |Ψ

〉
= (−1)|S|·|T |

〈
S | a|T 〉Ψ

〉
= (−1)|S|·|T |

〈
a|T 〉Ψ |S

〉
= (−1)|S|·|T |

〈
Ψ̂T |S

〉
.

If Ψ ∈ ∧NH, the above term is nonzero only if |S| + |T | = N . For N odd we

thus have (−1)|S|·|T | = 1. It follows that
(

Ψ̂
)∗

= Ψ̂. γΨ can now be rewritten

in terms of Ψ̂:

〈S | γΨT 〉 =
〈
a|T 〉Ψ | a|S〉Ψ

〉
=
〈
a|S〉Ψ | a|T 〉Ψ

〉
=
〈
S | Ψ̂

(
Ψ̂
)∗
T
〉
,

that is, γΨ = Ψ̂
(

Ψ̂
)∗

. In particular, the eigenvalues satisfy λi(γΨ) = σi

(
Ψ̂
)2

and tr γΨ =
∥∥∥Ψ̂
∥∥∥2

fro
.

D.4 Particle-hole duality
Definition 41. The dual operator ∗ acting on ∧H is the antilinear operator

∗(ϕ) := aϕ|1〉 with |1〉 ≡ |1, 2, . . . ,K〉.

A short calculation shows that
{
n|i〉 − n|j〉, ∗

}
= 0 for all i, j.
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D.5 Ground states of interaction Hamiltonians
Fix p ∈ {0, 1, . . . ,K} and let h be a self-adjoint linear operator acting on ∧pH.
Introduce the self-adjoint linear operator H :=

∑
S,T 〈S |hT 〉 a

†
|S〉a|T 〉 acting on

∧NH for fixed N ≥ p. Our goal is to find the smallest eigenvalue of H, i.e. the
minimum of 〈Ψ |HΨ〉, Ψ ∈ ∧NH, ‖Ψ‖ = 1. Here comes in the reduced density
matrix:

〈Ψ |HΨ〉 =
∑
S,T

〈S |hT 〉
〈

Ψ | a†|S〉a|T 〉Ψ
〉

=
∑
S,T

〈S |hT 〉 〈T | γΨS〉

=
∑
S

〈S |hγΨS〉 = tr∧pH (hγΨ) .

Now consider the special case p = 2 and h =
∑
|S|=2 λS |S〉〈S| with given

λS ∈ R. Then H =
∑
|S|=2 λSn|S〉, and the standard basis elements T ⊆

{1, . . . ,K} with |T | = N are exactly the eigenvectors of H:

H|T 〉 =
∑

S⊆T,|S|=2

λS |T 〉.

Thus we try to solve
min
|T |=N

∑
S⊆T,|S|=2

λS .

Define a real symmetric matrix A = (aij) and a vector x ∈ {0, 1}K by

aij =
{

1
2λ{i,j}, i 6= j
0, otherwise and xi =

{
1, i ∈ T
0, otherwise

then 〈T |HT 〉 = 〈x |Ax〉. This results in the following integer quadratic pro-
gramming problem on {0, 1}K :

minxTAx subject to cTx = N, c = (1, . . . , 1)T .

Note that we can without loss of generality assume that A is positive definite
since xTAx = xT (A+ λIK)x− λN for all λ ∈ R.

48



Bibliography

Tsuyoshi Ando. Properties of Fermion Density Matrices. Review of Modern
Physics, 35(3):690 – 702, July 1963.

Angelika Bunse-Gerstnert, Ralph Byers, and Volker Mehrmann. Numerical
Methods For Simultaneous Diagonalization. SIAM Journal on Matrix Anal-
ysis and Applications, 14(4):927–949, October 1993.

A. John Coleman. Structure of Fermion Density Matrices. Review of Modern
Physics, 35(3):668 – 686, 1963.

Gero Friesecke. The Multiconfiguration Equations for Atoms and Molecules:
Charge Quantization and Existence of Solutions. Archive for Rational Me-
chanics and Analysis, 169:35–71, 2003.

Gero Friesecke and Benjamin D. Goddard. Exact solution of a minimal-basis
CI model for Li, Be, B, C, N, O,F, Ne. To be published, 1:1–25, 2008a.

Gero Friesecke and Benjamin D. Goddard. Explicit large nuclear charge limit
of electronic ground states of Li, Be, B, C, N, O, F, Ne and basic aspects of
the periodic table. arXiv [math-ph], arXiv:0807.0628v1:1–42, June 2008b.

Herman H. Goldstine and L. Phil Horwitz. A Procedure for the Diagonalization
of Normal Matrices. Journal of the ACM, 6:176 – 195, 1959.

David R. Lide. CRC Handbook of Chemistry and Physics, 84th Edition. CRC
Press, 84 edition, 2003.

Yi-Kai Liu, Matthias Christandl, and F. Verstraete. Quantum Computational
Complexity of the N-Representability Problem: QMA Complete. Physical
Review Letters, 98:110503, 2007.

Per-Olov Löwdin. Quantum Theory of Many-Particle Systems. I. Physical In-
terpretations by Means of Density Matrices, Natural Spin-Orbitals, and Con-
vergence Problems in the Method of Configurational Interaction. Physical
Review, 97(6):1474–1489, Mar 1955.

David A. Mazziotti. Reduced-Density-Matrix Mechanics: With Application to
Many-Electron Atoms and Molecules, volume 134 of Advances in Chemical
Physics. Wiley & Sons, March 2007.

Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

49



Michael Reed and Barry Simon. Methods of Modern Mathematical Physics I:
Functional Analysis. Academic Press, 1972.

Mary Beth Ruskai. Connecting N-representability to Weyl’s problem: The
one particle density matrix for N = 3 and R = 6. arXiv [quant-ph],
arXiv:0706.1855v1:1–9, 2007.

Chen Ning Yang. Concept of Off-Diagonal Long-Range Order and the Quantum
Phases of Liquid He and of Superconductors. Reviews of Modern Physics, 34
(4):694 – 704, October 1962.

Eberhard Zeidler. Applied Functional Analysis: Applications to Mathematical
Physics, volume AMS Vol. 108. Springer New York, 1995.

50



51



Acknowledgments

First of all, I’d like to thank Gero Friesecke for supervising this thesis, including
many very insightful discussions about quantum chemistry, and for giving me the
opportunity to attend various workshops in Berlin, Oberwolfach and Warwick.

I had a very good time with Prof. David Pettifor and Bernhard Seiser in
Oxford, and I’m grateful that Prof. Folkmar Bornemann gave me some hints how
to implement the simultaneous diagonalization of commuting normal matrices
numerically.

Finally, I’d like to thank my fellow students Yuen Au Yeung and Martin
Fürst for numerous general discussions and reviewing this thesis, and of course
my parents and my brothers Joachim and Johannes.

52


