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Quantum ensemble averages

Goal: compute canonical ensemble averages

〈Â〉 = Z−1 tr
[
Â e−βH

]
, Z = tr

[
e−βH

]
for a Hubbard-type Hamiltonian

H = K + V

K = −t
∑
〈i,j〉,σ

(
c†iσcjσ + c†jσciσ

)
− µ

∑
i

(ni↑ + ni↓)

V = U
∑
i

(ni↑ − 1
2 )(ni↓ − 1

2 )

t kinetic hopping amplitude
µ chemical potential
U el-el interaction strength



Traces in quantum Fock-space

For a Hamiltonian of quadratic form

H =
∑
i,j

hij c
†
i cj

the following exact identity holds:

tr
[
e−βH

]
= det

[
1 + e−βh

]
full quantum Fock-space single-particle space

Simple to check for a single “orbital”: H = ε c†c ,

tr
[
e−βH

]
= 〈0|e−βεc

†c |0〉+ 〈1|e−βεc
†c |1〉 = 1 + e−βε.

In the general case, consider a basis in which h is diagonal.
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Hubbard-Stratonovich transformation

However, Hubbard interaction term contains four-fermion operators . . .
May the 4th be with you!

 discrete Hubbard-Stratonovich transformation
(using that niσ ∈ {0, 1}, after Trotter splitting β = ∆τL)

e−∆τU
∑

i (ni↑−
1
2 )(ni↓− 1

2 ) = e−∆τU/4 1
2

∑
s=±1

e−∆τsλ(ni↑−ni↓)

four-fermion ops. two-fermion ops.
(niσ = c†iσciσ)

λ determined by cosh(∆τλ) = e∆τU/2

White, Scalapino et al. PRB 40, 506 (1989)
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From quantum ensemble averages to classical Monte Carlo

Applying Trotter splitting (β = ∆τL) and the Hubbard-Stratonovich
transformation eventually leads to

Z = tr
[
e−βH

]
=

∑
{si`=±1}

det
[
M↑(s)

]
det
[
M↓(s)

]

with
Mσ(s) = 1 + BσL−1(s)BσL−2(s) · · ·Bσ0 (s),

where
Bσ` (s) = e∓∆τλv(s·`) e−∆τk , ` = 0, 1, . . . , L− 1,

k is the kinetic single-particle matrix and

v(s·`) =


s1` 0 0 . . .
0 s2` 0 . . .
0 0 s3` . . .
...

...
...

. . .

 .
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From quantum ensemble averages to classical Monte Carlo

Idea: interpret as probability density

Z−1 det
[
M↑(s)

]
det
[
M↓(s)

]

Figure: ↑: si` = 1, ↓: si` = −1

 sample over Hubbard-Stratonovich field configurations si` using
classical Monte-Carlo



Imaginary time Green’s function

Matsubara Green’s function (with τ, τ ′ ∈ [0, β]):

Gσ(τ, τ ′)ij = 〈T ciσ(τ)c†jσ(τ ′)〉.

For discretized version in the field s and τ = τ ′, can derive that

Gσ(`, s) =
[
1 + Bσ`−1(s) · · ·Bσ0 (s)BσL−1(s) · · ·Bσ` (s)

]−1

with τ = ∆τ` and

Bσ` (s) = e∓∆τλv(s·`) e−∆τk .

Blankenbecler et al. PRD 24, 2278 (1981)



Imaginary time Green’s function

Matsubara Green’s function (with τ, τ ′ ∈ [0, β]):

Gσ(τ, τ ′)ij = 〈T ciσ(τ)c†jσ(τ ′)〉.

For discretized version in the field s and τ = τ ′, can derive that

Gσ(`, s) =
[
1 + Bσ`−1(s) · · ·Bσ0 (s)BσL−1(s) · · ·Bσ` (s)

]−1

with τ = ∆τ` and

Bσ` (s) = e∓∆τλv(s·`) e−∆τk .

Blankenbecler et al. PRD 24, 2278 (1981)



Metropolis sampling of Hubbard-Stratonovich field

Start with random initial si` configuration and compute
corresponding Green’s function for ` = 0

Sequentially for all i and `, suggest a flip si` → s ′i` = −si`,
acceptance probability R = R↑R↓ with

Rσ =
det[Mσ(s ′)]

det[Mσ(s)]
= 1 + (1− Gσ(`, s)ii )

(
e±2∆τλsi` − 1

)
(computationally “cheap” since Green’s function is known)

If flip is accepted, update Green’s function via a Sherman-Morrison
scheme (cost O(] matrix entries))

Green’s function on next time slice `→ `+ 1:

Gσ(`+ 1, s) = Bσ` (s)Gσ(`, s)Bσ` (s)−1

To avoid gradual loss of precision, still have to recompute Green’s
function from scratch after several steps (expensive)

White, Scalapino et al. PRB 40, 506 (1989)
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Fermion sign problem

Algorithm relies on probability density

Z−1 det
[
M↑(s)

]
det
[
M↓(s)

]
,

but this can become negative for certain s!

To circumvent, factor into sign(s) × absolute value, and pull sign
towards observable:

〈Â〉 → 〈Â sign(s)〉
〈sign(s)〉

However, for low temperatures, 〈sign(s)〉 becomes small, need many
more Monte-Carlo samples to reliably estimate 〈Â〉.
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Implementation

Many additional “tricks of the trade” to stabilize and speed up algorithm,
for example

Explicitly keep track of determinants of Green’s functions, otherwise
numerical loss of precision when computing them based on matrix
entries

Long chain of matrix multiplications in

Gσ(`, s) =
[
1 + Bσ`−1(s) · · ·Bσ0 (s)BσL−1(s) · · ·Bσ` (s)

]−1

can lead to extremely large condition numbers; alleviate by
sequential QR-decompositions with column pivoting
Bai et al. Linear Algebra Appl. 435, 659–673 (2011)
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Example: occupancy and sign

Mott plateau

-4 -2 2 4
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Average occupancy in dependence of
chemical potential µ
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Temperature dependence of sign

Parameters: 8 × 8 lattice, t = 1, t′ = −0.3, U = 8, ∆τ = 0.1



Example: spectral function
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Figure: Doping dependence of the spectral function A(k, ω) along high
symmetry cuts through the Brillouin zone

Parameters: 8 × 8 lattice, t = 1, t′ = −0.25, U = 8, β = 3, ∆τ = 0.1

Using maximum entropy analytic continuation to “real” frequencies ω,

G (k, τ) =

∫ ∞
−∞

e−τω

1 + e−βω
A(k, ω)dω.

Jarrell and Gubernatis, Phys. Rep. 269, 133–195 (1996)
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Summary

Main ingredients:

From quantum Fock to single-particle space

tr
[
e−βH

]
= det

[
1 + e−βh

]
Introduce auxiliary Hubbard-Stratonovich field si` to obtain
quadratic form for U-term

Efficient Metropolis sampling of

Z−1 det
[
M↑(s)

]
det
[
M↓(s)

]
using Green’s function
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Trotter splitting

Introduce an imaginary-time step ∆τ such that β = ∆τL. Trotter
splitting  

Z = tr
[
e−∆τLH

]
'
(
tr
[
e−∆τV e−∆τK

])L



Imaginary time flow

Remark: the product

BL−1(s)BL−2(s) · · ·B0(s)

with
B`(s) = e−∆τλv(s·`) e−∆τk

is a discrete approximation of the imaginary time flow

U(τ, τ ′) = T exp
[
−
∫ τ

τ ′
dτ̂ H(τ̂)

]
in the field s, where T is the imaginary-time ordering operator.

Blankenbecler et al. PRD 24, 2278 (1981)


