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Wigner crystallization at low electron density

Homogeneous electron gas will “crystallize”
and form a lattice for low densities,
predicted by Wigner 1934. Somewhat
counter-intuitively, the low density limit
corresponds to strong correlation: denote
the average distance between electrons by a:

2 h2
kinetic energy : Eyi, ~ LGN 2
2;77 2ma Figure: Wigner
) _ e” crystal (image by
potential energy : Vi, 3 John Trail)

Thus for large a, potential energy (Coulomb repulsion) dominates!
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DFT for strictly correlated electrons (SCE)

Hohenberg-Kohn:

Elpl = Flol + [ ve(e)o(0)
with F[p] an universal functional of the density:
v).

Standard Kohn-Sham: treat \A/ee as perturbation, leads to
Kohn-Sham noninteracting system.
Here: neglect T and minimize (Seidl et al. 1999a,b, 2007)

Flp] = \Ln'_|>r1p<\|i)£l'+ Vee

A

Vee

SCE i
Vee " lp] = min <W

~+ “classical” electrostatic problem
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Connection with “optimal transport”
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Figure: transport plan f from “supply” to “demand”

Original formulation (Monge 1781): given two probability
measures p, v and fixed o € {1,2}, optimize

inf /Qx—f(x)|a du(x)

fH#u=v

over transport maps f which “push pu forward to v", i.e.,
[det VF(x)| (F(x)) = p(x)

under certain regularity assumptions
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Optimal transport visualization

Figure: Sphere mapped to its deformed counterpart (Rehman et al. 2009)
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Kantorovich formulation of optimal transport

Formulation by Monge 1781:

it [ x= G0l du()

Kantorovich formulation (Kantorovich 1940, 1942):

inf x — y|® dy(x,
76F(W)//! y[* dv(x,y)

with '(u, ) the set of all joint probability measures.
Quantum mechanics setting: Coulomb cost function |X1—y‘ i.e.,

o = —1. Compare with VSCF for N = 2:

. 1
VSCE[IO] — mlnp Z //’rl_ |W(r1,01,r2,a2)|2 dr1 dr2
2

r2\
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Optimal transport with Coulomb cost
N N 1
\U>, Vee:,zz‘l’,‘—rj’
i=1 j>i

Co-motion formulation (Seidl et al. 1999a,b, 2007), corresponding
to Monge's original version:

1
= [0S e e

i=1 j>i

A
Vee

Ve [p] = min (w

with co-motion functions f; : R3 — R3 satisfying the mass
conservation constraint p(fi(r)) |det VFi(r)| = p(r), and

fi(r):=r, fo(r) :=f(r), f3(r) =F(f(r)), fulr) = F(F(F(r))),
f(F(...£(F(r)))) =r
N times

due to indistinguishability of the electrons
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Application: Wigner localization in 2D quantum dots

(C. B. Mendl, F. Malet and P. Gori-Giorgi PRB 2014)
N electrons in two dimensions, laterally confined by a parabolic
potential, described by Hamiltonian

i u h2 2 1 2.2 2 u 1
H:,-z—;<_2f77v"+2mw ri>+e er;—rjl

i<j

Ynm()

Figure: Single-electron eigenstates for w =1
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Wigner localization in 2D quantum dots

Standard spin-restricted Kohn-Sham equations

v2
(-5 + wslil)) o) = i)
with vgs[p](r) the Kohn-Sham potential. Here, approximate

Vis(r) =2 Vext(r) + vscr(r)

with vexi(r) = %mwzr2 the external potential and vgcg(r) the
one-body local potential corresponding to the Coulomb repulsion
from the other electrons:

B N r—fi(r)
vaScE[P](r) - ;h‘—f,(l‘)’?’

It holds that vscp[p](r) = "% 2.

Christian B. Mend| Kohn-Sham Density Functional Theory in the Framework of “Str



Wigner localization in quantum dots: co-motion functions

For circularly symmetric systems, can separate co-motion functions
into radial and an angular part! Semi-analytic formulas for radial
part, simplifies calculation considerably.

fi(n

— f1(n

2001 \ | 7 fz(l’)

/ f3(r)
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— f40)
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(a) radial components (b) trajectories

Figure: Co-motion functions f;(r) = (fi(r), 0i(r)) for the unpolarized
quantum dot with N =7 and w = 0.001
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Wigner localization in quantum dots: co-motion functions

Figure: Co-motion functions f;(r) = (f;(r),0;(r)) for two different
positions of the “first” electron, corresponding to the unpolarized dot
with N =7 and w = 0.001
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Wigner localization in quantum dots: co-motion functions
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Wigner localization in 2D quantum dots: density

w =1 w = 0.001

;o

non-spin-
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Figure: Electronic density p(r) for a quantum dot with N = 10 electrons,
for w =1 and w = 0.001

Christian B. Mend| Kohn-Sham Density Functional Theory in the Framework of “Str



Kantorovich dual formulation of optimal transport

Kantorovich dual formulation of
optimal transport
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Kantorovich dual formulation of optimal transport

Difficulty of comotion functions f;: until now numerically feasible
only for spherically symmetric problems or 1D systems.
Alternative: Kantorovich dual formulation (Buttazzo et al. 2012;
Cotar et al. 2013):

as |r|] = o0

~» practical numerical method to solve the dual formulation?
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Solving the Kantorovich dual formulation

(Mendl and Lin 2013) Introduce a functional g[v] of v(r) by

g[v] = I’{Tll}n Epot(rh ceey rN), with

N

N N
Epot(Fi, - tn) =D > m i i > v(ri),

i=1 j>i i=1

where the minimization is performed over all possible choices of
the positions of the N electrons. The Kantorovich dual problem
can then be written as

VAPl = max ( [ vis)ots)as + ).

)

s.t. g[v] > NC,

using the normalization condition [ p(r)dr = N
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Solving the Kantorovich dual formulation (cont.)

Constrained optimization problem
VPl = max ([ vote)ds + nC )
s.t. g[v] > NC,

can be converted to a nested unconstrained optimization problem
by eliminating the parameter C, resulting in

VETElp] = max (/ v(s)p(s)ds + g[V]> :

Remark: Jg["]( ) cannot be analytically computed for the exact
Kantorovich dual potential v(r)
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Solving the Kantorovich dual formulation: pseudocharge

For numerical efficiency, want “small” computational domain
(similar to density p(r)).

Idea: preserve asymptotic behavior of v(r) by introducing a
pseudocharge m(r) associated to v(r):

m(r')

r—r

v(r) =

The asymptotic behavior v(r) ~ % translates to the constraint

/m(r)dr:N—l.
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Example: Beryllium atom

Results using the dual formulation:

v(n)

Figure: Kantorovich potential v(r): co-motion formulation (thick blue
solid line), Kantorovich dual formulation with the pseudocharge m(r)
parametrized by a single Gaussian (thin magenta solid line) and by the
sum of two Gaussians (red dashed line). The green dot-dashed line shows
the asymptotic expansion
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Example: Trimer molecule in 3D

(a) density p(r) (b) pseudocharge m(r)

Figure: (a) isosurface of the electron density p(r). (b) Optimized
pseudocharge m of the trimer molecule (solid blue) and density p(r) as in
(a) (dashed red), plotted along the line connecting 1 and 0 in (a).
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Outlook: co-motion functions using finite elements

(joint work in progress with H. Chen and G. Friesecke)
Finite elements ey, - - , e,, with barycenters ¢, and electron mass
Pr = fek p(r)dr. Approximate the co-motion function by

f(cy) = o) 2K

1<i<n P!

Xy represents the electron mass
transported from cj to c;.
~ linear programming problem

. Xkl
R .
X |I’k—l’/’

1<k,/<n
s.t. Zxk/:pk, I=1,---,n
1<k<n Figure: OT map example
for Hy molecule
Zxk/:p/a k:]-a"'an
1<I<n
Xk = 0
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