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Wigner crystallization at low electron density

Figure: Wigner
crystal (image by
John Trail)

Homogeneous electron gas will “crystallize”
and form a lattice for low densities,
predicted by Wigner 1934. Somewhat
counter-intuitively, the low density limit
corresponds to strong correlation: denote
the average distance between electrons by a:

kinetic energy : Ekin ∼
p2

2m
∼ ~2

2ma2

potential energy : Vee ∼
e2

a

Thus for large a, potential energy (Coulomb repulsion) dominates!

Christian B. Mendl Kohn-Sham Density Functional Theory in the Framework of “Strictly Correlated Electrons”



DFT for strictly correlated electrons (SCE)

Hohenberg-Kohn:

E [ρ] = F [ρ] +

∫
vext(r)ρ(r) dr

with F [ρ] an universal functional of the density:

F [ρ] = min
Ψ7→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ
〉
.

Standard Kohn-Sham: treat V̂ee as perturbation, leads to
Kohn-Sham noninteracting system.
Here: neglect T̂ and minimize (Seidl et al. 1999a,b, 2007)

V SCE
ee [ρ] := min

Ψ7→ρ

〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉
, V̂ee =

N∑
i=1

N∑
j>i

1

|ri − rj |

 “classical” electrostatic problem
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Connection with “optimal transport”

supply (µ) demand (ν)

f(x)

Figure: transport plan f from “supply” to “demand”

Original formulation (Monge 1781): given two probability
measures µ, ν and fixed α ∈ {1, 2}, optimize

inf
f #µ=ν

∫
Ω
|x − f (x)|α dµ(x)

over transport maps f which “push µ forward to ν”, i.e.,

|det∇f (x)| ν(f (x)) = µ(x)

under certain regularity assumptions
Christian B. Mendl Kohn-Sham Density Functional Theory in the Framework of “Strictly Correlated Electrons”



Optimal transport visualization

Figure: Sphere mapped to its deformed counterpart (Rehman et al. 2009)
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Kantorovich formulation of optimal transport

Formulation by Monge 1781:

inf
f #µ=ν

∫
Ω
|x − f (x)|α dµ(x)

Kantorovich formulation (Kantorovich 1940, 1942):

inf
γ∈Γ(µ,ν)

∫ ∫
|x − y |α dγ(x , y)

with Γ(µ, ν) the set of all joint probability measures.
Quantum mechanics setting: Coulomb cost function 1

|x−y | , i.e.,

α = −1. Compare with V SCE
ee for N = 2:

V SCE
ee [ρ] = min

Ψ 7→ρ

∑
σ1,σ2

∫ ∫
1

|r1 − r2|
|Ψ(r1, σ1, r2, σ2)|2 dr1 dr2
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Optimal transport with Coulomb cost

V SCE
ee [ρ] = min

Ψ→ρ

〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉
, V̂ee =

N∑
i=1

N∑
j>i

1

|ri − rj |

Co-motion formulation (Seidl et al. 1999a,b, 2007), corresponding
to Monge’s original version:

V SCE
ee [ρ] =

1

N

∫
ρ(r)

N∑
i=1

N∑
j>i

1

|fi (r)− fj(r)|
dr

with co-motion functions fi : R3 → R3 satisfying the mass
conservation constraint ρ(fi (r)) |det∇fi (r)| = ρ(r), and

f1(r) := r, f2(r) := f(r), f3(r) = f(f(r)), f4(r) = f(f(f(r))),

· · · f(f(. . . f(f(r))))︸ ︷︷ ︸
N times

= r

due to indistinguishability of the electrons
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Application: Wigner localization in 2D quantum dots

(C. B. Mendl, F. Malet and P. Gori-Giorgi PRB 2014)
N electrons in two dimensions, laterally confined by a parabolic
potential, described by Hamiltonian

Ĥ =
N∑
i=1

(
− ~2

2m
∇2

i +
1

2
mω2r2

i

)
+ e2

N∑
i<j

1

|ri − rj |

-4 -2 2 4
r

2

4

6

yn,mHrL

Figure: Single-electron eigenstates for ω = 1
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Wigner localization in 2D quantum dots

Standard spin-restricted Kohn-Sham equations(
−∇

2

2
+ vKS[ρ](r)

)
φi (r) = εiφi (r) ,

with vKS[ρ](r) the Kohn-Sham potential. Here, approximate

vKS(r) ' vext(r) + vSCE(r)

with vext(r) = 1
2mω2r2 the external potential and vSCE(r) the

one-body local potential corresponding to the Coulomb repulsion
from the other electrons:

−∇vSCE[ρ](r) =
N∑
i=2

r − fi (r)

|r − fi (r)|3
.

It holds that vSCE[ρ](r) = δV SCE
ee [ρ]
δρ(r) .
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Wigner localization in quantum dots: co-motion functions

For circularly symmetric systems, can separate co-motion functions
into radial and an angular part! Semi-analytic formulas for radial
part, simplifies calculation considerably.
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(a) radial components

-200 -100 100 200

-200

-100

100

200
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Figure: Co-motion functions fi (r) = (fi (r), θi (r)) for the unpolarized
quantum dot with N = 7 and ω = 0.001
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Wigner localization in quantum dots: co-motion functions

Figure: Co-motion functions fi (r) = (fi (r), θi (r)) for two different
positions of the “first” electron, corresponding to the unpolarized dot
with N = 7 and ω = 0.001
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Wigner localization in quantum dots: co-motion functions
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Wigner localization in 2D quantum dots: density

Figure: Electronic density ρ(r) for a quantum dot with N = 10 electrons,
for ω = 1 and ω = 0.001
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Kantorovich dual formulation of optimal transport

Kantorovich dual formulation of
optimal transport
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Kantorovich dual formulation of optimal transport

Difficulty of comotion functions fi : until now numerically feasible
only for spherically symmetric problems or 1D systems.
Alternative: Kantorovich dual formulation (Buttazzo et al. 2012;
Cotar et al. 2013):

V SCE
ee [ρ] = max

u

∫
u(s)ρ(s)ds,

s.t.
N∑
i=1

u(ri ) ≤
N∑
i=1

N∑
j>i

1

|ri − rj |
, ∀ {ri}Ni=1

Long-range asymptotic behavior:

u(r) = v(r) + C , v(r) ∼ N − 1

|r|
as |r| → ∞

 practical numerical method to solve the dual formulation?
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Solving the Kantorovich dual formulation

(Mendl and Lin 2013) Introduce a functional g [v ] of v(r) by

g [v ] = min
{ri}

Epot(r1, . . . , rN), with

Epot(r1, . . . , rN) =
N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

v(ri ),

where the minimization is performed over all possible choices of
the positions of the N electrons. The Kantorovich dual problem
can then be written as

V SCE
ee [ρ] = max

v ,C

(∫
v(s)ρ(s)ds + NC

)
,

s.t. g [v ] ≥ NC ,

using the normalization condition
∫
ρ(r) dr = N
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Solving the Kantorovich dual formulation (cont.)

Constrained optimization problem

V SCE
ee [ρ] = max

v ,C

(∫
v(s)ρ(s)ds + NC

)
,

s.t. g [v ] ≥ NC ,

can be converted to a nested unconstrained optimization problem
by eliminating the parameter C , resulting in

V SCE
ee [ρ] = max

v

(∫
v(s)ρ(s)ds + g [v ]

)
.

Remark: δg [v ]
δv (r) cannot be analytically computed for the exact

Kantorovich dual potential v(r)
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Solving the Kantorovich dual formulation: pseudocharge

For numerical efficiency, want “small” computational domain
(similar to density ρ(r)).
Idea: preserve asymptotic behavior of v(r) by introducing a
pseudocharge m(r) associated to v(r):

v(r) =

∫
m(r′)

|r − r′|
dr′.

The asymptotic behavior v(r) ∼ N−1
|r| translates to the constraint∫

m(r) dr = N − 1.
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Example: Beryllium atom

Results using the dual formulation:
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Figure: Kantorovich potential v(r): co-motion formulation (thick blue
solid line), Kantorovich dual formulation with the pseudocharge m(r)
parametrized by a single Gaussian (thin magenta solid line) and by the
sum of two Gaussians (red dashed line). The green dot-dashed line shows
the asymptotic expansion
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Example: Trimer molecule in 3D

(a) density ρ(r)

N=6

N=5

N=4

N=3N=2
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0.2

0.3

0.4

m

(b) pseudocharge m(r)

Figure: (a) isosurface of the electron density ρ(r). (b) Optimized
pseudocharge m of the trimer molecule (solid blue) and density ρ(r) as in
(a) (dashed red), plotted along the line connecting 1 and 0 in (a).
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Outlook: co-motion functions using finite elements

(joint work in progress with H. Chen and G. Friesecke)
Finite elements e1, · · · , en, with barycenters ck and electron mass
ρk =

∫
ek
ρ(r) dr. Approximate the co-motion function by

-2 -1 1 2
x

-2

-1

1

2
y

Figure: OT map example
for H2 molecule

f(ck) =
∑

1≤l≤n
cl
xkl
ρl
.

xkl represents the electron mass
transported from ck to cl .
 linear programming problem

min
X

∑
1≤k,l≤n

xkl
|rk − rl |

s.t.
∑

1≤k≤n
xkl = ρk , l = 1, · · · , n

∑
1≤l≤n

xkl = ρl , k = 1, · · · , n

xkl ≥ 0
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