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Hohenberg-Kohn for strictly correlated systems

Hohenberg-Kohn:

E [ρ] = F [ρ] +

∫
vext(r)ρ(r) dr

with F [ρ] an universal functional of the density:

F [ρ] = min
Ψ7→ρ

〈
Ψ
∣∣∣T̂ + V̂ee

∣∣∣Ψ
〉
.

Standard Kohn-Sham: treat V̂ee as perturbation, leads to
Kohn-Sham noninteracting system.
Here: neglect T̂ and minimize (Seidl et al. 1999b,a, 2007)

V SCE
ee [ρ] := min

Ψ7→ρ

〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉
, V̂ee =

N∑
i=1

N∑
j>i

1

|ri − rj |
.

 “classical” electrostatic problem.
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Why “optimal transport”?

supply (µ) demand (ν)

f(x)

Figure: transport plan f from “supply” to “demand”

Original formulation (Monge 1781): given two probability
measures µ, ν and fixed α ∈ {1, 2}, optimize

inf
f #µ=ν

∫
Ω
|x − f (x)|α dµ(x)

over transport maps f which “push µ forward to ν”, i.e.,

|det∇f (x)| ν(f (x)) = µ(x)

under certain regularity assumptions.
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Optimal transport visualization

Figure: Sphere mapped to its deformed counterpart (Rehman et al. 2009)
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Kantorovich formulation of optimal transport

Formulation by Monge 1781:

inf
f #µ=ν

∫
Ω
|x − f (x)|α dµ(x)

Kantorovich formulation (Kantorovich 1940, 1942):

inf
γ∈Γ(µ,ν)

∫ ∫
|x − y |α dγ(x , y)

with Γ(µ, ν) the set of all joint probability measures.
Quantum mechanics setting: Coulomb cost function 1

|x−y | , i.e.,

α = −1. Compare with V SCE
ee for N = 2:

V SCE
ee [ρ] = min

Ψ 7→ρ

∑
σ1,σ2

∫ ∫
1

|r1 − r2|
|Ψ(r1, σ1, r2, σ2)|2 dr1 dr2.
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Optimal transport with Coulomb cost

V SCE
ee [ρ] = min

Ψ→ρ

〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉
, V̂ee =

N∑
i=1

N∑
j>i

1

|ri − rj |

Co-motion formulation (Seidl et al. 1999b,a, 2007) (corresponds to
Monge’s original version):

V SCE
ee [ρ] =

1

N

∫
ρ(r)

N∑
i=1

N∑
j>i

1

|fi (r)− fj(r)|
dr

with co-motion functions fi : R3 → R3 satisfying the mass
conservation constraint ρ(fi (r)) |det∇fi (r)| = ρ(r).
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Example: beryllium atom

Co-motion functions fi (r) for the beryllium atom (Seidl et al.
2007), numerically feasible for spherically symmetric problems:

-4 -2 0 2 4
-4

-2

0

2

4

Figure: co-motion fi (r)

f2(r) =

{
N−1
e (2− Ne(r)) r ≤ a2

N−1
e (Ne(r)− 2) r > a2

f3(r) =

{
N−1
e (2 + Ne(r)) r ≤ a2

N−1
e (6− Ne(r)) r > a2

f4(r) = N−1
e (4− Ne(r))
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Beryllium atom (cont.)

Seidl et al. (2007)

(a) co-motion fi (r) (b) potential v(r)

Figure: Co-motion functions and potential for the beryllium atom
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Kantorovich dual formulation of OT

Difficulty of comotion functions fi : until now numerically feasible
only for spherically symmetric problems or 1D systems.
Alternative: Kantorovich dual formulation (Buttazzo et al. 2012;
Cotar et al. 2013):

V SCE
ee [ρ] = max

u

∫
u(s)ρ(s)ds,

s.t.
N∑
i=1

u(ri ) ≤
N∑
i=1

N∑
j>i

1

|ri − rj |
, ∀ {ri}Ni=1

Long-range asymptotic behavior:

u(r) = v(r) + C , v(r) ∼ N − 1

|r|
as |r| → ∞

This talk: practical numerical method to solve the dual
formulation.
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Solving the Kantorovich dual formulation

(Mendl and Lin 2013) Introduce a functional g [v ] of v(r) by

g [v ] = min
{ri}

Epot(r1, . . . , rN), with

Epot(r1, . . . , rN) =
N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

v(ri ),

where the minimization is performed over all possible choices of
the positions of the N electrons. The Kantorovich dual problem
can then be written as

V SCE
ee [ρ] = max

v ,C

(∫
v(s)ρ(s)ds + NC

)
,

s.t. g [v ] ≥ NC ,

using the normalization condition
∫
ρ(r) dr = N.
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Solving the Kantorovich dual formulation (cont.)

Constrained optimization problem

V SCE
ee [ρ] = max

v ,C

(∫
v(s)ρ(s)ds + NC

)
,

s.t. g [v ] ≥ NC ,

can be converted to a nested unconstrained optimization problem
by eliminating the parameter C , resulting in

V SCE
ee [ρ] = max

v

(∫
v(s)ρ(s)ds + g [v ]

)
.

Remark: δg [v ]
δv (r) cannot be analytically computed for the exact

Kantorovich dual potential v(r).
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Solving the Kantorovich dual formulation: pseudocharge

For numerical efficiency, want “small” computational domain
(similar to density ρ(r)).
Idea: preserve asymptotic behavior of v(r) by introducing a
pseudocharge m(r) associated to v(r):

v(r) =

∫
m(r′)

|r − r′|
dr′.

The asymptotic behavior v(r) ∼ N−1
|r| translates to the constraint∫

m(r) dr = N − 1.
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Beryllium atom (dual formulation)

Simple Ansatz: parametrize the pseudocharge m(r) by a single
Gaussian function:

m(r;σ) =
N − 1

(2πσ2)3/2
e−

r2

2σ2 .

Corresponding Kantorovich potential:

v(r;σ) =

∫
m(r′)

|r − r′|
dr′ =

N − 1

|r|
erf

(
|r|√
2σ

)
Relative error of V SCE

ee : 20.3%
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Beryllium atom (dual formulation)

Next idea: parameterize the pseudocharge m by a sum of two
concentric Gaussian functions:

m(r) = (N − 1)

cos2(ϑ)
e
− r2

2σ2
1(

2πσ2
1

)3/2
+ sin2(ϑ)

e
− r2

2σ2
2(

2πσ2
2

)3/2

 .

The relative error of V SCE
ee [ρ] is significantly reduced to 1.6%!
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Beryllium atom (dual formulation)

Results using the dual formulation:

-3�r

vHrL 2 4 6 8
r

-4

-3

-2

-1

vHrL

Figure: Kantorovich potential v(r): co-motion formulation (thick blue
solid line), Kantorovich dual formulation with the pseudocharge m(r)
parametrized by a single Gaussian (thin magenta solid line) and by the
sum of two Gaussians (red dashed line). The green dot-dashed line shows
the asymptotic expansion.
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Quantum wire

Model problem studied by Malet and Gori-Giorgi (2012).
N = 4 electrons, Hamiltonian

H = −1

2

N∑
i=1

∂2

∂x2
i

+
N∑
i=1

N∑
j>i

wb(xi − xj) +
N∑
i=1

vext(xi ),

where vext(x) = 1
2ω

2x2 is a confining potential and

wb(x) =

√
π

2 b
exp

(
x2

4 b2

)
erfc

(
|x |
2 b

)
is the effective Coulomb interaction.
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Quantum wire (dual formulation)

SCF iteration, both for co-motion formulation and
Kantorovich dual formulation

comparison of results:

L=6
L=14

-6 -4 -2 0 2 4 6
2x�L

0.5

1.0
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2.0

vHxL ´ L�2

(a) potential v(x)

L=6
L=14

-4 -2 2 4
2x�L

0.1
0.2
0.3
0.4
0.5
0.6
0.7

ΡHxL ´ L�2

(b) density ρ(x)

Figure: dual formulation (dashed lines) compared to co-motion
formulation (reference, solid lines)
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Quantum wire (dual formulation)

Figure: Parametrization of the dual potential v
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Trimer molecule in 3D

(a) density ρ(r)

N=6

N=5

N=4

N=3N=2

-4 -3 -2 -1 1 2 3 4

0.1

0.2

0.3

0.4

m

(b) pseudocharge m(r)

Figure: (a) isosurface of the electron density ρ(r). (b) Optimized
pseudocharge m of the trimer molecule (solid blue) and density ρ(r) as in
(a) (dashed red), plotted along the line connecting 1 and 0 in (a).
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Reduced density models

Reduced density models
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Reduction to probability densities

First observation (implicit in Seidl et al. (1999b, 2007)):〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉

=
∑

σ1,...,σN

∫
· · ·
∫ ∑

i<j

1

|ri − rj |

× |Ψ(r1, σ1, . . . , rN , σN)|2 dr1 · · · drN

only depends on the N-particle density ρN obtained by “tracing
out” the spin variables:

ρN(r1, . . . , rN) =
∑

σ1,...,σN

|Ψ(r1, σ1, . . . , rN , σN)|2 .

Thus, antisymmetry of the fermionic Ψ translates to symmetry of
ρN(r1, . . . , rN) under ri ↔ rj . Taking the “mathematical closure”
leads to symmetric probability densities on R3N , i.e.,

V SCE
ee [ρ] = min

ρN 7→ρ, ρN∈Psym
N

∫
R3N

Vee ρN .
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Two-body density formulation

Second observation (well known in the physics literature): since
V̂ee is a two-body operator, its expectation value only depends on
the two-body reduced density p2 (ρ2 rescaled by

(N
2

)
):∫

· · ·
∫
R3N

Vee ρN =

(
N

2

)∫ ∫
1

|r1 − r2|
p2(r1, r2)dr1 dr2

with

p2(r1, r2) =

∫
· · ·
∫
ρN(r1, . . . , rN)dr3 · · · drN . (1)

This leads to

V SCE
ee [ρ] = min

p2 7→ρ/N,
p2 N-density rep.

(
N

2

)∫ ∫
1

|r1 − r2|
p2(r1, r2)dr1 dr2,

N-density representability meaning that (1) holds for a ρN ∈ Psym
N .
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k-density representability approximation

Observation: if p2 is N-density representable, then it is also
k-density representable for k < N (follows by tracing out
rk+1, . . . , rN from ρN). Thus N-density representability becomes
more stringent as N increases.
(Friesecke et al. 2013) For k = 2, 3, . . . , define

V SCE,k
ee [ρ] = min

p2 7→ρ/N,
p2 k-density-rep.

(
N

2

)∫ ∫
1

|r1 − r2|
p2(r1, r2) dr1 dr2

(take k-body correlations into account)  natural hierarchy of
approximations:

V SCE,2
ee [ρ] ≤ . . . V SCE,k

ee [ρ] ≤ . . . V SCE,N
ee [ρ]

‖ ‖
min

p2 7→ρ/N

∫ ∫
1

|r1−r2| p2 V SCE
ee [ρ]
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Results for ab initio densities for small atoms

V SCE,k
ee of an N-electron system can be obtained by simulating a

fictitious k-electron system:

V SCE,k
ee [ρ] =

(N
2

)(k
2

)V SCE
ee

[
k
N ρ
]
.

He Li Be

1

2

3

4

5

6

7

Vee @a.u.D

J

exact

Vee
SCE

k=3

k=2

Figure: V SCE,k
ee [ρ] (blue) in comparison to the true V SCE

ee [ρ] (cyan)
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Self-consistent Kohn-Sham using V SCE,k
ee for atoms

Energy functional

E [ρ] = TKS[ρ] + V SCE,k
ee [ρ] +

∫
vext(r) ρ(r) dr

with TKS the Kohn-Sham kinetic energy functional and vext the
external nuclear potential, i.e., Exc = V SCE,k

ee − J.
 single-particle Hamiltonian:

H[ρ] = −1

2
∆− Z

|r|
+ u[ρ],

where u[ρ] = v [ρ] + C is the Kantorovich dual potential. Using

∇v [ρ](r) = −
N∑
i=2

r − fi (r)

|r − fi (r)|3
, lim
|r|→∞

v [ρ](r) = 0

to calculate v [ρ](r) as in Seidl et al. (2007).
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Self-consistent Kohn-Sham using V SCE,k
ee results

2 4 6 8 10 12
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Figure: Self-consistent density and shifted Kantorovich potential v [ρ]
(rescaled by N−1

k−1 ) corresponding to V SCE,k
ee [ρ].
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Summary and conclusions

Optimal transport with Coulomb cost

V SCE
ee [ρ] = min

Ψ→ρ

〈
Ψ
∣∣∣V̂ee

∣∣∣Ψ
〉

converted to dual formulation problem

V SCE
ee [ρ] = max

v

(∫
v(s)ρ(s)ds + g [v ]

)
,

g [v ] = min
{ri}

N∑
i=1

N∑
j>i

1

|ri − rj |
−

N∑
i=1

v(ri )

Advantage: applicable to more general systems (without
spherical symmetry)
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Summary and conclusions (cont.)

k-density representability approximation

V SCE,k
ee [ρ] = min

p2 7→ρ/N,
p2 k-density-rep.

(
N

2

)∫ ∫
1

|r1 − r2|
p2(r1, r2)dr1 dr2

=

(N
2

)(k
2

)V SCE
ee

[
k
N ρ
]

Low-order approximation already captures a large part of the
correlations (for the systems considered here)

Long-term goal: design exchange-correlation functionals based
on the SCE limit for strongly correlated systems
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