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Asymptotics-based configuration-interaction �CI� methods �G. Friesecke and B. D. Goddard,
Multiscale Model. Simul. 7, 1876 �2009�� are a class of CI methods for atoms which reproduce, at
fixed finite subspace dimension, the exact Schrödinger eigenstates in the limit of fixed electron
number and large nuclear charge. Here we develop, implement, and apply to 3d transition metal
atoms an efficient and accurate algorithm for asymptotics-based CI. Efficiency gains come from
exact �symbolic� decomposition of the CI space into irreducible symmetry subspaces at essentially
linear computational cost in the number of radial subshells with fixed angular momentum, use of
reduced density matrices in order to avoid having to store wave functions, and use of Slater-type
orbitals �STOs�. The required Coulomb integrals for STOs are evaluated in closed form, with the
help of Hankel matrices, Fourier analysis, and residue calculus. Applications to 3d transition metal
atoms are in good agreement with experimental data. In particular, we reproduce the anomalous
magnetic moment and orbital filling of chromium in the otherwise regular series Ca, Sc, Ti, V, Cr.
© 2010 American Institute of Physics. �doi:10.1063/1.3493677�

I. INTRODUCTION

The search for accurate computational methods for the
N-electron Schrödinger equation at moderate computational
cost has been a focus of activity for several decades.1–4 The
present article is a contribution to one part of the picture,
wave function methods for atoms. We develop, implement,
and apply to transition metal atoms an algorithmic frame-
work which renders asymptotics-based configuration-
interaction �CI� computations for atoms with basis sets of up
to 50 one-electron spin orbitals, up to 30 electrons, and full
resolution of all valence electron correlations feasible. An
attractive feature of our framework is that many steps are
done symbolically by building on, systematizing, and au-
tomatizing the paper-and-pencil analysis of asymptotics-
based CI for small atoms and minimal bases in Ref. 5.
A MATLAB/MATHEMATICA implementation is available at
Ref. 6.

CI methods3,7 approximate the electronic Schrödinger
equation by projecting it onto a well chosen subspace
spanned by Slater determinants. More precisely, the
Schrödinger equation for an atom or ion with N electrons is

H� = E�, � � La
2��R3 � �− 1

2 ,+ 1
2��N� , �1�

where H is the Hamiltonian of the system �see Eq. �3� be-
low�, � is the wave function, and E is the energy. The wave
function �=��x1 ,s1 , . . . ,xN ,sN� depends on the positions xi

�R3 and spins si� �− 1
2 ,+ 1

2
� of all electrons and belongs to

the space La
2��R3� �− 1

2 ,+ 1
2
��N� of square-integrable, antisym-

metric functions on �R3� �− 1
2 ,+ 1

2
��N. A CI method is an ap-

proximation of Eq. �1� by an equation of the form

PHP� = E�, � � V � La
2��R3 � �− 1

2 ,+ 1
2��N�

�2�
P = orthogonal projector onto V ,

where V is a span of a finite number of Slater determinants
��i1

, ¯ ,�iN
	 built from a finite number of spin orbitals

��1 , . . . ,�K��L2�R3� �− 1
2 ,+ 1

2
��. We recall the well known

fundamental difficulty of CI methods: Eq. �1� is a partial dif-
ferential equation in very high space dimension, e.g., dimen-
sion 72 in case of a single chromium atom as treated in this
paper. Hence, when discretizing the single-electron state
space by a reasonable number of spin orbitals, L2�R3

��− 1
2 ,+ 1

2
��
Span��1 , . . ,�K�, the ensuing natural choice

V=span���i1
¯�iN

	 :1� i1� ¯ � iN�K� �full CI� has a pro-
hibitively large dimension, � K

N
�.

Our principal contribution here is the development of an
efficient algorithm that minimizes the curse of dimension.
The main savings come from exact �i.e., symbolic� and effi-
ciently automated exploitation of symmetry to perform di-
mension reduction. Other ingredients are the use of reduced
density matrices in order to avoid having to store wave func-
tions and the use of Slater-type orbitals �STOs� including
exact orthonormalization and Coulomb integral evaluation.
The algorithm has been implemented for a recent variant of
CI, asymptotics-based CI,5 which exploits the asymptotic re-
sults in Ref. 8 and has the attractive features that the CI
subspace, if its dimension is K, reproduces correctly the first
K Schrödinger eigenstates in the limit of fixed K, fixed elec-
tron number, and large nuclear charge Z. �This limit, which
has a large literature �see, in particular, Refs. 9 and 10�,
captures the physical environment of inner shell electrons,
and has the multiscale property that the ratio of the first
spectral gap to the ground state energy of the Schrödinger
equation tends to zero,5 with the experimental ratio for true
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atoms being very close to zero, about 1 part in 1000 for
carbon and oxygen and 1 part in 30 000 for Cr and Fe.� The
main part of the algorithm, automated symmetry reduction,
can be easily adapted to other CI methods and orbitals �such
as Gaussians�.

As a typical application, we treat here the transition
metal series Ca, Sc, Ti, V, Cr, modeled by 18 core electrons
occupying Slater orbitals of type 1s to 3p, and an active
space consisting of 3d, 4s, 4p, and 4d Slater orbitals �of
either spin� accommodating the two to six valence electrons.
The resulting CI space V for Cr has dimension d= � 28

6
�

=376 740, and the CI Hamiltonian has d�d+1� /2
7�1010

entries. But automated symmetry reduction shows �see Table
III� that only 14 basis functions contribute to the experimen-
tal ground state configuration and symmetry, �Ar�4s13d5 7S,
allowing to evaluate the ensuing eigenvalues and eigenstates
easily and to machine precision. Our results, detailed in Sec.
VII below, provide an ab initio explanation of the anomalous
magnetic moment of chromium �experimentally, the ground
state has six instead of the expected four aligned spins� and
the underlying anomaly in the filling order of 3d versus 4s
orbitals in the semi-empirical orbital picture of the transition
metal atoms �chromium, unlike its four predecessors Ca, Sc,
Ti, and V, possesses only one instead of two 4s electrons�. It
is well known11–14 that single-determinant Hartree–Fock,
relativistic Hartree–Fock, and density functional theory cal-
culations �even with the best exchange-correlation function-
als such as B3LYP� render the correct filling orders and
ground state symmetries only for some but not all transition
metal elements �see Sec. VII�.

In the remainder of this section, we describe our algo-
rithm for exact (symbolic), efficient symmetry partitioning.
The �nonrelativistic, Born–Oppenheimer� Hamiltonian

H = �
i=1

N �−
1

2
�xi

−
Z

�xi�
 + �

1�i�j�N

1

�xi − x j�
�3�

governing atoms/ions with N electrons and nuclear charge Z
has the symmetry group

SU�2� � SO�3� � Z2, �4�

consisting of simultaneous rotation of electron spins and si-
multaneous rotation and sign reversal of electron positions.
This leads to the well known conservation law that the
Hamiltonian leaves the simultaneous eigenspaces of the spin,
angular momentum, and parity operators

L2, Lz, S2, Sz, R̂ �5�

invariant �see Sec. II A for precise definitions of these opera-
tors�. The fact that partitioning into symmetry subspaces sig-
nificantly lowers computational costs has long been known
to, and exploited by, theorists �see, e.g., Ref. 15�. A striking
example is the paper-and-pencil symmetry decomposition8,16

of a minimal asymptotics-based CI Hamiltonian PHP for the
second-period atoms He to Ne, with active space consisting
of the eight 2s and 2p spin orbitals accommodating the va-
lence electrons. For carbon, there are four valence electrons,
so the active space has dimension � 8

4
�=70 and the CI Hamil-

tonian is a 70�70 matrix. But due to symmetry it decom-

poses into fifteen 2�2 blocks and forty 1�1 blocks.
The main algorithmic steps which automate such decom-

positions are as follows.

�a� One starts by partitioning the CI space into configura-
tions, i.e., subspaces such as 1sn12sn22pn3. . . with a
fixed number ni of electrons in each subshell �see Sec.
II B below�. It suffices to symmetry-decompose each
configuration because the symmetry group, unlike the
Hamiltonian, leaves each configuration invariant indi-
vidually.

�b� Each configuration is isomorphic to a non-
antisymmetrized tensor product of lower-dimensional
factors. The tensor factors consist of single
1s ,2s ,2p , . . . subshells �see Sec. II B�. This product
structure is essential for step �d� below.

�c� The splitting up of each factor into simultaneous
eigenspaces of the symmetry operators �5� is done via a
suitable algorithm from the mathematics literature for
simultaneous diagonalization of commuting matrices,
for instance, that of Bunse-Gerstnert, Byers, and
Mehrmann.17 �We are indebted to Folkmar Bornemann
for helpful advice regarding this step.� Exact eigen-
states are recovered from the numerical eigenstates
through exploiting that the squares of the eigenstate
coefficients are, by representation theory, rational num-
bers.

�d� Given simultaneous eigenstates of the symmetry opera-
tors for each factor, simultaneous eigenstates of a two-
factor tensor product are known explicitly in terms of
the well known Clebsch–Gordan coefficients, and those
for a many-factor tensor product are easily obtained by
iteration of the Clebsch–Gordan formulae. This yields
the desired decomposition of each configuration.

A key feature of the algorithms �a�–�d� is the computa-
tional cost grows only linearly with the number of subshells,
provided the angular momentum cutoff is held fixed. Thus,
say, the cost of including s orbitals of type 1s ,2s , . . . ,ns is
only O�n� �see Sec. VI�.

The structure of this paper is as follows. In Sec. II we
briefly review asymptotics-based CI. Section III contains the
main contribution of this paper, namely, exact reduction
steps leading to significant savings of computational time
and memory storage. In Sec. IV we treat orthonormalization
and Coulomb integral evaluation for general atomic Slater-
type orbitals. We summarize all algorithmic steps in Sec. V
and carefully estimate the costs in Sec. VI. Finally, in Sec.
VII we apply the algorithmic framework to the electronic
structure of potassium, calcium, and the transition metals
scandium to zinc.

II. ASYMPTOTICS-BASED CI

We briefly recall the setup and features relevant to the
present work, referring to Refs. 5 and 16 for further informa-
tion.
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A. Symmetries

Due to invariance of the Hamiltonian �3� under the sym-
metry group �4�, the set of operators �5� commutes with the
Hamiltonian and with each other, for arbitrary N and Z.
These operators play an important role in our algorithmic
framework. Here and below we use the standard notation
L=�i=1

N L�i� �many-body angular momentum operator�, L�i�
=xi∧ i−1�xi

�angular momentum operator acting on the posi-
tion coordinates xi�R3 of the ith electron�, Lx ,Ly ,Lz �com-
ponents of L�, and analogously for spin �see, e.g., Ref. 16�.
The parity operator ��x1 ,s1 , . . . ,xN ,sN����−x1 ,s1 , . . . ,

−xN ,sN� is denoted by R̂.

B. Configurations

Our treatment of symmetry reduction is independent of
the particular orbitals used and works within the context of
general N-electron configurations as introduced in Ref. 5,
definition 2.2: Let

V1,V2, ¯ � L2�R3 � �− 1
2 ,+ 1

2�� �6�

be any collection of mutually orthogonal subspaces of the
single-electron Hilbert space, which are irreducible represen-
tation spaces for the joint spin and angular momentum alge-
bra span�Lx ,Ly ,Lz ,Sx ,Sy ,Sz� �or, equivalently, which are
joint eigenspaces of L2 and S2 with minimal dimension
�2�+1��2s+1� given the respective eigenvalues ���+1� and
s�s+1��. Then, a configuration of an N-electron atom or ion
is a subspace of the antisymmetrized N-electron state space
La

2��R3� �− 1
2 ,+ 1

2
��N� of the following form:

Cd1,. . .,dk = span���1, . . . ,�N	:��1, . . . ,�N�

any orthonormal set in L2�R3 � �− 1
2 ,+ 1

2��
with � �i:�i � Vj� = dj� ,

where �d1 , . . . ,dk�=d is a partition of N �i.e., 0�dj

�dim Vj , � jdj =N�. Physically, the Vj are subshells and the
dj are occupation numbers. The main point is that all choices
of the �i’s consistent with the requirement that a fixed num-
ber of them have to be picked from each Vj have to be
included.

Configurations, unlike general subspaces of
La

2��R3� �− 1
2 ,+ 1

2
��N� spanned by a basis of Slater determi-

nants, are invariant under the symmetry group �4� and its

generators L, S, and R̂, and in particular under the operators
�5�. The same holds for multiconfiguration subspaces

V = span�Cd�1�
, . . . ,Cd�M�

� , �7�

where each Cd�i�
is a configuration.

C. Asymptotics-based selection of configurations

Equation �7� still leaves a great deal of freedom for the
precise specification of the CI subspace V. In asymptotics-
based CI,5 the traditional step of an intermediate Hartree–
Fock calculation to determine orbitals is replaced by the the-
oretical requirement that the ansatz space reproduce correctly
the lowest Schrödinger eigenstates in the isoelectronic limit

Z→	 �see Theorem 1 below�. This requires STOs instead of
the asymptotically inexact linear combinations of Gaussians,
which are common in molecular calculations and corre-
sponds to full CI in an active space for the valence electrons
�instead of truncating valence electron correlations in terms
of order of excitation with respect to a reference determinant
as in double-excited CI or nonlinearly approximating them
as in coupled cluster theory�.

Asymptotics-based CI preserves the spin and angular
momentum symmetries of the original Hamiltonian, and
obeys the virial theorem, by determining orbital dilation pa-
rameters self-consistently for the actual CI wave functions
instead of precomputing them via a Hartree–Fock calcula-
tion. �The fact that methods with self-consistent dilation pa-
rameters always obey the virial theorem was pointed out by
Löwdin.18�

The specific asymptotics-based CI model for atoms used
in this paper is as follows.

�A� �Choice of a parametrized, asymptotically exact family
of subspaces� We specify the orbital spaces in Eq. �6�
as

Vn�
Z
ª Span��n�m↑,�n�m↓�m=−�. . .�,

n = 1,2, . . . , � = 0, . . . ,n − 1,

with orthonormal Slater �or hydrogen-like� orbitals

�n�m�x� = r�Y�m�
,��pn��Z1�, . . . ,Zn�,r�e−Zn�n/r,

r= �x�, and polynomials pn��Z1� , . . . ,Zn� , ·� of order
n−�−1 �see Eq. �21��. Here, Z= �Z1,0 ,Z2,0 ,Z2,1 , . . .� is a
vector of dilation parameters Zn��0. We then set

VZ
ª span� �

d�D
Cd� ,

where d= �dn��, n=1,2 , . . ., �=0, . . . ,n−1 is a vector of
occupation numbers which sum to N, and D is a finite
set of such vectors such that

�i� 0�dn��dim Vn�
Z =2· �2�+1�.

Prototypical is the set D consisting of all configu-
rations such that, with respect to alphabetical or-
dering of the indices �n ,��,

�ii� dn�=0 for �n ,��� �n ,��max

�iii� dn�=2· �2�+1� for �n ,��� �n ,��min.
Here, �ii� is a cutoff condition and �iii� says that all
subshells up to �n ,��min are completely filled.

�B� �Subspace eigenvalue problem� For each symmetry
subspace

V�sp
Z

ª �� � VZ:L2� = ��� + 1�� ,�

S2� = s�s + 1��, R̂� = p��

of VZ �angular momentum, spin, and parity quantum
numbers �, s, and p, respectively�, Ej

CI,Z
ªeigenvalues

of PZHPZ on V�sp
Z , � j

CI,Z
ªcorresponding orthonormal

eigenstates, where PZ=orthogonal projector of La
2��R3

� �− 1
2 ,+ 1

2
��N� onto VZ.

184101-3 Efficient algorithm for asymptotics-based CI J. Chem. Phys. 133, 184101 �2010�

Downloaded 29 Nov 2010 to 130.183.250.1. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



�C� �Variational parameter determination� For each symme-
try subspace V�sp

Z �VZ, Z�ªargminZ�minjEj
CI,Z�,

Ej
CI
ªEj

CI,Z�, and � j
CI
ª� j

CI,Z�.

Here argminxf�x� denotes a minimizer of the functional
f . We remark that minimizing dilation parameters Z are ex-
pected to exist provided the nuclear charge Z is greater or
equal to the number N of electrons �in which case the full
Rayleigh–Ritz variational principle possesses a minimizer19�.
In our numerical computations, we always found this to be
the case.

Also, for future reference we define

cCI
ª number of core spin-orbitals of the CI model

= �
�n,����n,��min

2�2� + 1� ,

tCI
ª total number of spin-orbitals of the CI model

= �
�n,����n,��max

2 · �2� + 1� .

Of course, the model only makes sense �i.e., the space V is
nonempty�, provided the cutoffs �n ,��min and �n ,��max are
chosen so that cCI�N� tCI.

We summarize the asymptotic properties of the above
model in the following straightforward generalization of
Theorem 2.1 in Ref. 5 on second-period atoms. The follow-
ing numbers associated with the noninteracting N-electron
atom play a role: n−�N�, n+�N�, c�N�, and t�N�, which denote
the number of closed shells, closed or open shells, core spin-
orbitals, and core or valence spin-orbitals, respectively.
Explicitly,16 n− and n+ can be expressed in terms of the num-
ber of spin orbitals in the first n� hydrogen shells, f�n��
ª�n=1

n� ��=0
n−12 · �2�+1�, as the largest integer such that f�n−�

�N, respectively, the smallest integer such that f�n+�N.
One then has c�N�= f�n−�N�� and t�N�= f�n+�N��.

Theorem 1. (Correct asymptotic behavior) The CI model
(A), (B), and (C) with D given by (ii) and (iii) has the fol-
lowing properties. In the large nuclear charge limit Z→	
for N and dim VZ fixed, the lowest

�min�t�N�,tCI� − max�c�N�,cCI�
N − max�c�N�,cCI�


eigenvalues E1

CI�E2
CI� . . . and E1�E2� . . . (repeated ac-

cording to multiplicity) of the CI model, respectively, the
Schrödinger equation (1) satisfy

lim
Ej

CI

Ej
= 1.

If moreover cCI�c�N� (i.e., the CI model does not constrain
the occupation numbers of any noncore orbitals) and tCI

 t�N� (i.e., at least all core and valence orbitals are in-
cluded in the CI model), then there exist orthonormal CI,
respectively, Schrödinger eigenstates �i

CI and �i correspond-
ing to the above eigenvalues such that

lim��i
CI − �i� = 0,

where � · � is the norm on the N-electron space
La

2��R3� �− 1
2 ,+ 1

2
��N�.

Finally, under the same condition on cCI and tCI, the
spectral gaps satisfy

lim
�Ej

CI

�Ej
= 1 �8�

whenever �Ej �0, where �Ej
CI=Ej

CI−E1
CI and �Ej =Ej −E1

�j2�.
We emphasize that the above theorem only covers the

regime of large Z. For neutral atoms, the highest eigenstates
in the ansatz space of asymptotics-based CI are typically
observed to lie above higher Rydberg states or even above
the bottom of the continuous spectrum.

III. EXACT REDUCTION STEPS AND LS
DIAGONALIZATION

This section explains exact reduction steps which are
essential for cutting down the calculation time and storage
requirement of the algorithmic implementation.

A. Tensor product structure of configurations

Our first observation connects N-particle configurations
�see Sec. II B� to the nonantisymmetrized tensor product of
antisymmetrized dj-particle states, preserving the action of
the angular momentum and spin operators. Here and below,
we use the standard notation20 ∧nV for the n-fold antisym-
metrized tensor product of a vector space V and V � W for
the tensor product of two spaces V and W.

Proposition 2: Consider irreducible representation
spaces V1 , . . . ,Vk as in Eq. (6) and particle numbers
d1 , . . . ,dk0. Then the following isometric isomorphism
holds:

Cd1,. . .,dk � �
j=1

k

∧djVj . �9�

A canonical mapping of basis vectors is given by

T:��1
1, . . . ,�d1

1 , . . . ,�dk

k 	 � ��1
1, . . . ,�d1

1 	 � ¯ � ��1
k, . . . ,�dk

k 	 ,

with �i
j �Vj for all i , j. Moreover, T commutes with the ac-

tion of the angular momentum and spin operators, i.e.,

T�L�� = ��
j=1

k

L jT���, T�S�� = ��
j=1

k

S jT���

for all ��Cd1,. . .,dk, where L ,S on the left hand sides are
N-particle operators and each L j ,S j on the right hand side
acts on the dj-particle tensor factor ∧djVj.

Proof: Clear from the definitions.

In particular, dim�Cd1,. . .,dk�=� j
� dim�Vj�

dj
�. Note that Eq. �9�

inherently takes into account the antisymmetrization of fer-
mionic wave functions without requiring any additional nor-
malization factors. The isometry �9� is reflected in the algo-
rithmic implementation by ordering Slater determinants
lexicographically and arranging coefficients accordingly, see
Fig. 1.
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B. LS diagonalization

A priori, the diagonalization of the angular momentum
and spin �LS� operators seems as expensive as diagonalizing
the Hamiltonian itself, yet it turns out to come at much
cheaper costs. It involves mostly algebra and can be done
prior to setting up the Hamiltonian.

�1� Calculate all irreducible LS eigenspaces for each many-
particle subshell. In more detail, let u=s , p ,d , . . . denote
the angular momentum subshells in common chemist’s
notation and set

Vu ª span�Y�m↑,Y�m↓��=ang�u�,m=−�. . .�

with the spherical harmonics Y�m. Note that this is an
explicit realization of the spaces in Eq. �6�. Then, for all
n=1, . . . ,dim�Vu� �equal to 2� �2�+1��, decompose
the n-particle space ∧nVu into the direct sum of irreduc-
ible spin and angular momentum representation spaces.
That is,

∧nVu = �
i

Vuni �10�

such that

L2� = �i��i + 1�� ,

S2� = si�si + 1�� ∀ � � Vuni,

dim�Vuni� = �2�i + 1��2si + 1� .

Explicit results are shown in Table I; subshells from ∧4Vd to
∧10Vd are omitted for brevity’s sake and only states with
maximal Lz and Sz quantum numbers are displayed; applying
the ladder operators L−=Lx− iLy and S−=Sx− iSy yields the
remaining wave functions. Note that symmetry levels can
appear twice within a many-particle subshell, e.g., 2D in
∧3Vd. In concordance with the Clebsch–Gordan method be-
low, the ordered single-particle orbitals are Lz and Sz eigen-
states, denoted by

�s, s̄� for Vs,

�p1,p1,p0,p0,pn1,pn1� for Vp,

�d2,d2,d1,d1, . . . ,dn2,dn2� for Vd.

The highest quantum number appears first and ·̄ equals spin
down ↓ �convention as in Ref. 16�.

The decomposition �10� first requires a matrix represen-
tation of the angular momentum and spin operators
Lx ,Ly ,Lz ,Sx ,Sy ,Sz on ∧nVu. We obtain it by starting from the
canonical single-particle representation on Vu �spherical har-
monics� and writing the n-body operator in the form B
=�i,jbijai

†aj, where bij are the coefficients of the single-
particle representation and ai

† and aj are fermionic creation
and annihilation operators. The operators ai

†aj map Slater
determinants to Slater determinants; thus, all entries of their
corresponding matrix representation are 0 or �1.

The next task to arrive at Eq. �10� involves the simulta-
neous diagonalization of the pairwise commuting operators
L2 ,S2 ,Lz ,Sz. We present two alternatives.

Alternative 1
apply an algorithm of choice, e.g., Ref. 17, for the simultaneous
diagonalization of L2 ,S2 ,Lz ,Sz on ∧nVu, denoting the eigenvalues or
“quantum numbers” of L2 ,S2 ,Lz ,Sz by ���+1� ,s�s+1� ,m� ,ms,
respectively

for each subspaces W with m�=� and ms=s do
choose an ONB ��1 , . . . ,�r� of W

for j=1, . . . ,r do
add VunjªSpan�� j ,L−� j ,S−� j ,L−S−� j , . . .� to the decomposition �10�
end for
end for

Note that the iterative application of the ladder operators
L− and S− ensures that the resulting subspaces Vunj are in-
variant irreducible representation spaces.

Alternative 2
count←0

for �=0,1 , . . . and s= � 1
2 , 3

2 , . . . n odd

0,1 , . . . n even � do

Xª �L2−���+1�id�S2−s�s+1�id�Lz−�id �Sz−sid�

calculate WªKern�XX†��∧nVu

if W=� then
next for loop

end if
choose an ONB ��1 , . . . ,�r� of W
for j=1, . . . ,r do
add VunjªSpan�� j ,L−� j ,S−� j ,L−S−� j , . . .� to the decomposition �10�
end for

count←count+r
stop if �i=1

countdim�Vuni�=dim�∧nVu�
end for

The second alternative exchanges the direct diagonaliza-
tion in alternative 1 for testing all potential eigenvalues �that
is, integer or half-integer numbers� with m�=� and ms=s.
Efficient numerical methods exist for computing the kernel
W, which take advantage of the sparse structure of the matrix
representation.

�2� Consider N-electron configurations Cn1,. . .,nk assembled

FIG. 1. Lexicographical ordering of the � k1
d1

� · � k2
d2

� Slater determinants re-
stricted to a fixed configuration involving two one-particle subspaces V1 and
V2 of dimensions k1 and k2, with d1 particles in orbitals 1 , . . . ,k1 and d2

particles in the remaining orbitals k1+1 , . . . ,k1+k2. Filled circles correspond
to filled orbitals. Usefully, restriction to a configuration preserves lexico-
graphical ordering.
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from the above single-particle subshells, with nj elec-
trons in subshell j �angular momentum uj� such that
N=� jnj. Using the decomposition in step 1, simulta-
neously diagonalize the pairwise commuting operators

�5� acting on Cn1,. . .,nk. �The parity operator R̂ is constant
on Cn1,. . .,nk anyway and needs no further consideration.�
In more detail, the isometry �9� and the decomposition
�10� imply

Cn1,. . .,nk � �
I=�i1,. . .,ik�

VI, VI ª �
j

Vuj,nj,ij
. �11�

By construction, each VI is uniquely characterized by
its eigenvalues with respect to the LS operators L j

2 and
S j

2 acting on the jth tensor factor. Since

L = �
j

L j, S = �
j

S j ,

all operators

L2,S2,Lz,Sz,R̂,L j
2,S j

2 j = 1, . . . ,k

commute pairwise and it follows that each VI is an
invariant subspace of the operators �5�. Thus, the diago-
nalization can be performed on each VI independently.
An explicit solution for the diagonalization in case of
k=2 is well known in terms of the Clebsch–Gordan
coefficients, which can be iteratively extended to higher
k. We obtain

TABLE I. Irreducible LS eigenspace decompositions of ∧nVu in Eq. �10�, showing states with maximal Lz and Sz quantum numbers only.

Configuration Symmetry Lz Sz �

∧1Vs
2S 0 1

2 �s	

∧2Vs
1S 0 0 �ss̄	

∧1Vp
2Po 1 1

2 �p1	

∧2Vp
1S 0 0 1 /�3�−�p1pn1	+ �p1pn1	+ �p0p0	�
3P 1 1 �p1p0	
1D 2 0 �p1p1	

∧3Vp
4So 0 3

2 �p1p0pn1	
2Po 1 1

2 1 /�2��p1p1pn1	+ �p1p0p0	�
2Do 2 1

2 �p1p1p0	

∧4Vp
1S 0 0 1 /�3�−�p1p1pn1pn1	− �p1p0p0pn1	+ �p1p0p0pn1	�
3P 1 1 �p1p1p0pn1	
1D 2 0 �p1p1p0p0	

∧5Vp
2Po 1 1

2 �p1p1p0p0pn1	

∧6Vp
1S 0 0 �p1p1p0p0pn1pn1	

∧1Vd
2D 2 1

2 �d2	

∧2Vd
1S 0 0 1 /�5��d2dn2	− �d2dn2	− �d1dn1	+ �d1dn1	+ �d0d0	�
3P 1 1 1 /�5�−�2· �d2dn1	+�3· �d1d0	�
1D 2 0 1 /�7�−�2· �d2d0	+�2· �d2d0	+�3· �d1d1	�
3F 3 1 �d2d1	
1G 4 0 �d2d2	

∧3Vd
2P 1 1

2 1 /�210�4�3· �d2d1dn2	−2�3· �d2d1dn2	−4�2· �d2d0dn1	
−�2· �d2d0dn1	−2�3· �d2d1dn2	+5�2· �d2d0dn1	+3�3· �d1d1dn1	

+3�3· �d1d0d0	�
4P 1 3

2
1
�5

�−�3· �d2d1dn2	+�2· �d2d0dn1	�
2D 2 1

2 1 /�15�2�2· �d2d2dn2	−�2· �d2d1dn1	+�2· �d2d1dn1	+�3· �d1d1d0	�

2D 2 1
2

1 /�70�−�d2d2dn2	−5· �d2d1dn1	+3· �d2d1dn1	+5· �d2d0d0	
+2· �d2d1dn1	+�6· �d1d1d0	�

2F 3 1
2 1 /2�3��6· �d2d2dn1	− �d2d1d0	− �d2d1d0	+2· �d2d1d0	�

4F 3 3
2 �d2d1d0	

2G 4 1
2 1 /�5��2· �d2d2d0	+�3· �d2d1d1	�

2H 5 1
2 �d2d2d1	
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VI = �
�sm�ms

�m����,�ms��s

VI,�sm�ms
�12�

such that for all ��VI,�sm�ms
,

L2� = ��� + 1��, Lz� = m��

S2� = s�s + 1��, Sz� = ms� .

Note that VI,�sm�ms
may be zero for some � ,s ,m� ,ms.

Assembling Eqs. �11� and �12�, we obtain

Cn1,. . .,nk � �
�sm�ms

V�sm�ms
,

V�sm�ms
ª �

I
VI,�sm�ms

.

That is, we have decomposed the configurations into the
simultaneous eigenspaces of the angular momentum and spin
operators �5�

C. Restriction to fixed m� and ms

From general results about the angular momentum and
spin algebra, it is well known that within an irreducible
L2-S2-eigenspace, the ladder operators L�=Lx� iLy and S�

=Sx� iSy traverse the Lz and Sz eigenstates, respectively. Ad-
ditionally, the ladder operators commute with the Hamil-
tonian H in Eq. �3� as well as with the CI Hamiltonian. Thus,
in terms of eigenvalue determination, it suffices to restrict to
LS eigenstates with fixed m� and ms. We adopt the conven-
tion in Ref. 16 and set m��0, ms�s in the sequel.

D. Reduced density matrices

In this subsection, we will incorporate reduced density
matrices �RDMs� �see, e.g., Refs. 4, 7, and 21� into the al-
gorithmic framework to gain computational speedups and
memory storage savings. In fact, we use RDMs of wave
function pairs.

For any pair of states � and � in the N-body Hilbert
space �1�, the matrix element of the Hamiltonian �3� can be
rewritten as

���H�	 = trH�h0���	���� + tr∧2H�vee���	���� , �13�

where ���	��� and ���	��� are the one-body and two-body re-
duced density matrices of the N-body matrix ��	���, respec-
tively. Here, h0 is the single-particle �hydrogen-like� Hamil-
tonian and vee is the interelectronic Coulomb potential,

h0 = −
1

2
�x −

Z

�x�
, vee =

1

�x − y�
. �14�

Since these operators are independent of spin, we may effec-
tively “trace out” the spin. With the standard notation

�ab�cd� ª �
R6

a�x1�b�x1�
1

�x1 − x2�
c�x2�d�x2�dx1x2, �15�

we obtain

���H��	 = tr�ĥ0�̂��	���� + tr�v̂ee�̂��	���� , �16�

with

�ĥ0�i,j ª �i�h0�j	 , �17�

��̂��	����i,j ª �
�

�i�����	����j�	 , �18�

�v̂ee�ij,k� ª �ij�k�� , �19�

��̂��	����k�,ij ª �
�,�

i��k�

�j�,������	����i�,k�	 . �20�

Here, i , j ,k ,� denote spatial orbitals and � ,� ,� ,� are asso-
ciated spin parts. The inequality constraint in the last sum
refers to lexicographical ordering of spin orbitals.

By choosing the spatial orbitals real-valued, it follows
that �ij �k��= �ji �k�� and �ij �k��= �ij ��k� for all i , j ,k ,�.
Thus, together with �ij �k����k� � ij�, it suffices to calculate
�ij �k�� for i� j, k��, and �i , j�� �k ,�� �in lexicographical
order� only.

For our purposes, the following two features of the
above RDM formalism are crucial. First, it avoids having to
set up the full N-particle operators H0 and Vee, allowing one
to work instead with the one-particle and two-particle opera-
tors h0 and vee; this leads to significant storage savings �see

Sec. VI D�. Second, the map from � and � to �̂��	��� is an
algebraic coefficient mapping which only depends on the
symmetry types of the orbitals �i.e., s , p ,d , . . .� and neither
the radial wave functions nor the dilation parameters Zn�. So

the �̂��	��� can be precomputed for each angular momentum
and spin symmetry eigenspace, without any reference to the
Hamiltonian. The dilation parameters only enter the stage via
the Coulomb integrals in v̂ee.

IV. HANDLING SLATER ORBITALS „STOS…

A. Orthonormalization

In this subsection, we formalize the orthonormalization
calculations for STOs employed in Eq. 31 of Ref. 16. There,
only 1s, 2s, and 2p wave functions are considered, whereas
here, we handle arbitrary subshells.

More concretely, the wave functions are given by

�n�m�x� = sn�r�Y�m�
,��� �
i=0

n−�−1

bn�,icn�,ir
ie−Zn�n/r,

�21�
r = �x�, � = 0, . . . ,n − 1, n = 1,2, . . . ,

with bn�,i being the ith coefficient of the associated Laguerre
polynomial p�r�=Ln−�−1

2�+1 �2r /n�,

bn�,i ª � n + �

2� + 1 + i
 �− 2/n�i

i!
,

and to-be determined orthogonalization coefficients cn�,i

�R �i=0, . . . ,n−�−1� as well as orthonormalization con-
stants sn��0. Since the spherical harmonics Y�m are orthogo-
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nal, we may fix the angular momentum quantum numbers
� ,m. Now using �0

	rne−�rdr= n!
�n+1 , orthogonality translates to

0 = ��n�m��k�m	

= �
0

	 �
0

2� �
0

�

�n�m�x��k�m�x�r2 sin 
d
d�dr

= sn�sk��
i,j

bn�,ibk�,jcn�,ick�,j
�i + j + 2� + 2�!

�Zn�

n
+

Zk�

k
i+j+2�+3

= sn�sk��cn��Bn�Hnk
� Bk�ck�	 �22�

for all k=�+1, . . . ,n−1. Here we have extended the vectors
�ck�,i�i=0,. . .,k−�−1 by ck�,i=0 for ik−�. The Hankel matrix
Hnk

� is defined by

Hnk
�
ª �ai+j

� ����i,j��=�Zn�/n�+Zk�/k, ai
���� ª

�i + 2�� + 1��!
�i+2�+3

and Bn� is the diagonal matrix diag�bn�,i�i. Summarizing Eq.
�22�, we obtain

cn� � span�Bn�Hnk
� Bk�ck��k=�+1,. . .,n−1, �23�

so cn� can be calculated iteratively for n=�+1,�+2, . . . start-
ing from the convention c��+1��,0=1.

Note that the ai
� are the moments of a nonnegative mea-

sure m on the positive real axis R+. Namely, let dm�,��t�
= t2��+1�e−�tdt, then

ai
���� = �

R+

tidm�,��t� .

The Stieltjes moment problem22 states that this is equivalent
to the quadratic form given by Hnk

� being positive.
Once all cn� have been obtained, we may plug k=n into

Eq. �22� to calculate the normalization factors sn� from

1=! ��n�m��n�m	 = �sn��2�cn��Bn�Hnn
� Bn�cn�	 . �24�

B. One-body integrals

The one-body matrix elements

��n�m��n���m�� ª ��n�m�h0��n���m�	 �25�

=�
R3
�1

2
��n�m · ��n���m� −

Z

�x�
�n�m�n���m�d3x

can be evaluated symbolically from Eq. �21� by a computer
algebra system, via symbolic differentiation and exact inte-
gration in spherical polar coordinates.

C. Two-body integrals

1. Switching to real-valued, Cartesian coordinates

As mentioned in Sec. III D, we save computational costs
by switching to real-valued spatial orbitals when calculating
Coulomb integrals. Thus, for each fixed �, we apply a unitary
base change U�= �u�,mm��mm� to the spherical harmonics Y�m

of degree � to obtain real-valued polynomials in Cartesian
coordinates,

Z�m�x� ª r� �
m�=�,�−1,. . .,−�

u�,mm�Y�m�=
! �

p1+p2+p3=�

c�m,p · xp,

where c�m,p�R and xq
ª�i=1

3 xi
qi. Plugging this into Eq. �21�

results in real-valued Slater-type orbitals given by

�n�m�x� = sn�Z�m�x�� �
i=0

n−�−1

dn�,ir
ie−Zn�/nr, �26�

where we have set dn�,iªbn�,icn�,i to shorten notation.
Concretely, for �=1, we adapt Ref. 16 and choose �in

this order�

�Z1m�x��m = �pz,px,py� ª
1

2
� 3

�
�x3,x1,x2� .

For �=2,

�Z2m�x��m = �d0,dz,dm,dx,dy� ª
1

4
�15

�

� �2x3
2 − x1

2 − x2
2

�3
,2x1x2,x1

2 − x2
2,2x2x3,2x1x3 ,

or, figuratively, dx�2yz, dy�2xz, dz�2xy, d0
��3z2−r2� /�3, and dm�x2−y2. The corresponding unitary
U� read

U1 =
1
�2� 0 �2 0

− 1 0 1

i 0 i
�

and

U2 =
1
�2�

0 0 �2 0 0

− i 0 0 0 i

1 0 0 0 1

0 i 0 i 0

0 − 1 0 1 0
�

when arranging the spherical harmonics Y�m with decreasing
quantum number m.

2. Transformation to Fourier space

We adapt the idea in Ref. 16 to calculate Coulomb inte-
grals between pairs of spatial orbitals by applying Fourier
transformation. We use the normalization-factor-free conven-
tion

�Ff��k� ª �
Rn

f�x�e−ik·xdx .

Given one-electron orbitals �1 ,�2 , . . . with �i and F�i

�L2�R3��L	�R3�, let f�x�ª�i�x�� j�x� and g�x�
ª�k�x����x�. Then �see, e.g., Ref. 16�

��i� j��k��� =
1

2�2�
R3

1

�k�2
�Ff��k��Fg��k�d3k .

Since we have switched to real-valued Cartesian orbitals in
Sec. IV C 1, f�x�=�i�x�� j�x� can be expanded as
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f�x� = �
�=0

�max

r�� �
q1,q2,q3=0

qmax

c�,q · xqe−�r, r = �x� �27�

with constants c�,q and ��0. Directly from the definition of
the Fourier transformation, it follows that

�Ff��k� = �
�,q

c�,q�− 1�� ��

��� iq1+q2+q3
�q

�kq �Fe−�r��k� , �28�

where we have used the notation

�q

�kq ª �
i=1

3
�qi

�ki
qi

for each q � N0
3.

It is well known that

�Fe−�r��k� =
8��

��2 + k2�2 , k = �k� .

Thus, precomputing the following integral over polar coor-
dinates:

Iq,q���,��� ª �− i�q1+q2+q3iq1�+q2�+q3�
1

2�2

� �
0

	 �
0

� �
0

2� � �q

�kq

8��

��2 + k2�2
�� �q�

�kq�

8���

���2 + k2�2sin 
d�d
dk

we obtain for the spinless Coulomb integrals �19� with orbit-
als �21�

�v̂ee�ij,k� = ��i� j��k���

= �
�,��

�
q,q�

c�,qc��,q� · �− 1��+�� ��

���

���

���v�
Iq,q���,��� ,

�29�

with c�,q and � as in Eq. �27� and c��,q and �� as the analo-
gous constants for �k�x����x�.

3. Application to dilated Slater-type orbitals

Taking pairwise products of the wave functions �26� in-
volves the convolution of coefficients

f�x� ª �n�m�x��n���m��x� = sn�sn���Z�m�x�Z��m��x�

� ��
i

�dn� � dn����ir
ie−�Zn�/n+Zn���/n��r

with the discrete convolution

�dn� � dn����i = �
k

dn�,kdn���,i−k.

Similar reasoning applies to the product Z�mZ��m�,

Z�m�x�Z��m��x� = �
�p�1=�+��

�c�m � c��m��p · xp.

Let

g�x� ª �ñ�̃m̃�x��ñ��̃�m̃��x�

be another pairwise product of wave functions. Then the
Coulomb integral of these pairs equals

��n�m�n���m���ñ�̃m̃�ñ��̃�m̃�� =� �
R3

f�x�g�y�
�x − y�

d3xd3y =
�29�

sn�sn���sñ�̃sñ��̃��
i

�dn� � dn����i�
j

�dñ�̃ � dñ��̃�� j

� �
�p�1=�+��

�c�m � c��m��p �
�q�1=�̃+�̃�

�c�̃m̃ � c�̃�m̃��q

��− 1�i+j �i

��i

� j

�� j Ip,q��,����=Zn�/n+Zn���/n�,�=Zñ�̃/ñ+Zñ��̃�/ñ�
. �30�

V. COMPUTING THE CI LEVELS AND STATES

Our overall algorithm for the CI method in Sec. II C
consists of a symbolic part �symmetry reduction and reduc-
tion to two-body space� and a numerical part �Hamiltonian
matrix diagonalization and orbital exponent optimization�.

A. Symbolic precomputation

The following precomputational steps will allow us to
calculate the matrix representation of the Hamiltonian
quickly, given plug-in values for the dilation parameters Zn�:

�1� Compute the simultaneous eigenspaces of the operators
�5�, via the algorithm described in Sec. III B.

�2� For any simultaneous eigenspace of the operators �5�,
choose an orthonormal basis ��1 , . . . ,�r� and calculate
the one-particle and two-particle reduced density matri-
ces ���i	��j�

and ���i	��j�
, respectively, of the N-particle

states ��i	�� j� for all i , j=1, . . . ,r. Subsequently, trace
out the spin part as defined in Eqs. �20� and �18� to

obtain �̂��i	��j�
and �̂��i	��j�

.
�3� For the Slater orbitals �21�, calculate symbolic versions

of the orthonormalization constants cn� and sn� in Sec.
IV A via Eqs. �23� and �24�, respectively. Note that
these constants still depend on the dilation parameters
Zn�, which will be plugged in at the numerical optimi-
zation step below.
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�4� Calculate symbolic matrix representations �17� and �19�
of the single-particle and electron-interaction Hamilto-
nians h0 and vee using, a computer algebra system, and
Eq. �25� for h0 and Eq. �30� for vee. These matrices still
depend on the orthonormalization constants sn� and
cn�,i from step 2 and on the dilation parameters Zn�.

B. Numerical diagonalization and energy minimization

For any given set of orbital exponents Zn�, we can now
calculate and diagonalize the matrix representation of the
Hamiltonian projected onto any LS eigenspace by using the
reduced density matrix formalism in Sec. III D. In math-
ematical terms,

�1� For a current numerical value of the orbital exponents
Z1,0 ,Z2,0 ,Z2,1 , . . ., evaluate the symbolic orthonormal-
ization constants sn� and cn�,i and the symbolic matrix

elements of ĥ0 and v̂ee.
�2� Equation �16� yields the matrix elements of the Hamil-

tonian on an LS eigenspace with orthonormal basis
��1 , . . . ,�r�, namely,

��i�H�� j	 = tr�ĥ0�̂��j	��i�
� + tr�v̂ee�̂��j	��i�

� .

�Note that it would be theoretically possible but com-
putationally inefficient to carry out this step symboli-
cally.�

�3� Obtain the ground state energy E
=�min���i�H�� j	i,j=1,. . .,r�.

�4� Iteratively repeat these steps for different values of the
orbital exponents within a suitable optimization routine
to minimize the ground state energy numerically. �We
used a gradient-free simplex search method.�.

VI. COST ANALYSIS

In what follows, we review the computational speedup
of the central algorithmic steps as compared to operating
directly on the full N-particle Hilbert space ∧NH.

A. Configurations

In this paragraph, we quantify the savings by the con-
figuration calculus introduced in Sec. III A. To shorten nota-
tion, set gjªdim Vuj

and assume that the total particle num-
ber N is fixed. Thus, the dimension of the full N-particle
Hilbert space equals � �gj

N
�. Consider configurations Cn1,. . .,nk

with �nj =N. They partition the Hilbert space and accord-
ingly,

�
n1,. . .,nk

�nj=N

dim�Cn1,. . .,nk� = �
n1,. . .,nk

�nj=N

�
j
�gj

nj


= �� gj

N
 = dim�∧NH�

as expected. Now, assume we are given an algorithm of order
O�dimp�, such as, e.g., LS diagonalization with p=3. Run-

ning this algorithm either applied to all configurations sepa-
rately or to the full N-particle Hilbert space incurs computa-
tional costs of order

�
n1,. . .,nk

�nj=N

dim�Cn1,. . .,nk�p as compared to dim�∧NH�p.

�31�

In what follows, we derive an estimate of the quotient of
these two terms. The Stirling approximation of factorials and
a logarithmic series expansion leads to

�g

n
 
 21/2+g��g�−1/2e−�g − 2n�2/2g.

Plugging this into the left hand side of Eq. �31� yields

�
n1,. . .,nk

�nj=N

�
j
�gj

nj
p


� ¯�
−	

	

��N − � nj�

�
j

2p��1/2�+gj���gj�−p/2e−p�gj − 2nj�
2/2gjdn1 ¯ dnk.

The Fourier transform of these integrals is the pointwise
product of the individual Fourier transforms. One obtains

�
−	

	

2p�1/2+g���g�−p/2e−p�g − 2n�2/2ge−intdn

= �2/��1/2�p−1�p−1/22pgg1/2�1−p�e−gt�4ip+t�/�8p�

for each individual transform. Now, the inverse Fourier
transform of the pointwise products gives the desired ap-
proximation of the left hand side of Eq. �31�, namely,

�2/��1/2�1−k+kp�p1/2�1−k��gprod�1/2�1−p�

�2pgsum�gsum�−1/2e−p�gsum − 2N�2/2gsum, �32�

where we have set gsumª� jgj and gprodª� jgj to shorten
notation. Finally, dividing the �Stirling approximated� right
hand side of Eq. �31� by Eq. �32� yields the sought-after
quotient

��

2
1/2�k−1��p−1�

p1/2�k−1��gprod

gsum
1/2�p−1�

.

Note that this factor is independent of the particle number N.
It equals 1 for p=1, as expected.

As concrete example, consider chromium with three ac-
tive subshells 3p ,3d ,4s, i.e., all subshells up to 3s are com-
pletely filled. Thus, in terms of the computation parameters,
we have �g1 ,g2 ,g3���dim Vp ,dim Vd ,dim Vs�= �6,10,2�,
Neff=12 �electron number in active orbitals�, and algorithmic
order p=3, say. Then, the approximated quotient equals
5�2�49.348, which is close to the exact number
50 774 322 144 /938 076 521�54.1.
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B. LS diagonalization for sparse vectors

In this paragraph, we show that the cost of the decom-
position �12� essentially scales linearly in the problem size
dim�VI�, assuming a sparse structure of the associated coef-
ficient vectors.

First, consider two irreducible angular momentum
eigenspaces V1 and V2 with quantum numbers � j and dimen-
sions �2� j +1� �j=1,2, without loss of generality �1�2�.
Then the Clebsch–Gordan method partitions V1 � V2 into
total angular momentum eigenstates, i.e.,

V1 � V2 = �
�=��1−�2�

�1+�2

V12,�, dim�V12,�� = 2� + 1.

Each V12,� requires the computation of exactly

numCG�V12,�� = ��1 + �2 + 1��2� + 1� − ��1 − �2�2 − ��� + 1�

�33�

Clebsch–Gordan coefficients and Kronecker products �1

� �2 �� j �Vj�. Due to the mentioned sparse structure, we
assume O�1� cost for each of these Kronecker products.
Summing up Eq. �33� for all � yields

�
�=��1−�2�

�1+�2

numCG�V12,��

= �2�2 + 1���2�1 + 1��2�2 + 1� −
1

3
��2�2 + 1�2 − 1��

� �2�2 + 1�dim�V1 � V2� . �34�

Now consider irreducible angular momentum eigenspaces
Vj, j=1, . . . ,k, with respective quantum numbers � j. The
computational cost of the iterated Clebsch–Gordan method
will be dominated by the calculation of the total angular
momentum eigenspaces of

��
i

V1,. . .,k−1;�̃i
� � Vk, dim�V1,. . .,k−1;�̃i

� = 2�̃i + 1,

where each V1,. . .,k−1;�̃i
is an irreducible angular momentum

eigenspace in � j=1
k−1Vj such that �i�2�̃i+1�=dim�V1 � ¯

� Vk−1�. According to Eq. �34�, this requires not more than
�2�k+1� ·dim�V1 � ¯ � Vk� Clebsch–Gordan coefficients
and associated Kronecker products. Thus, in case of all Vj

being of uniformly bounded dimension, i.e., �1 , . . . ,�k

��max, the cost is of order

costCG�V1, . . . ,Vk� = O�dim�V1 � ¯ � Vk�� . �35�

So indeed, the cost is �almost� of the order of the problem
size.

The analysis for spin states is exactly the same and the
angular momentum and spin operators can be treated inde-
pendently. Thus, the result �35� remains valid when consid-
ering both angular momentum and spin.

C. Diagonalization of the Hamiltonian

We now consider the exact reduction steps introduced in
Secs. II A and III C: the Hamiltonian can be diagonalized
within each LS eigenstate separately and only states with

quantum numbers m��0, ms�s need to be taken into ac-
count. �Partitioning into configurations is advantageous for
the LS diagonalization only, since the Hamiltonian mixes
configurations.� The latter saves a factor of �2�+1� · �2s+1�
states with each L2-S2 eigenspace. The former, in the ex-
amples in Sec. VII, reduces the number of states by a factor
of 102–103.

We illustrate the huge cost reduction by the example of
the chromium 7S states with configurations �Ar�3dj4s4pk4d�

such that j+k+�=5 �see Sec. VII�. The dimension of the full
CI state space equals � 26

5
�=65 780 �since five valence elec-

trons have to be allocated to 10+6+10 possible orbitals�. By
contrast, restricting to a typical symmetry subspace of inter-
est, such as 7S �i.e., L2=0 and S2=3�3+1��, reduces the di-
mension to 98 and taking Sz maximal and Lz=0 reduces it
further to 14.

D. Storing RDMs instead of N-particle wave functions

Even though the number of required wave functions has
been reduced, each individual N-electron wave function on a
K-orbital space still requires, a priori, � K

N
� entries.

First—as illustrated in Sec. III D—this cost can be re-
duced since the components of the Hamiltonian matrix on a
given N-particle subspace only requires knowledge of the
two-particle density matrices of any pair of N-particle basis
functions. These RDMs have � K

2
�2=O�K4� entries, namely,

����	����ij,k� with 1� i� j�K and 1�k���K.
Second, applying the spinless density matrix defined in

Eq. �20� reduces the number K of single-particle orbitals by
one half.

Third, we note that the density matrix typically exhibits
a sparse structure, so we actually need far fewer entries. This
is related to prior LS diagonalization on the N-particle Hil-
bert space. More precisely, the two-particle RDM of an
N-particle L2-S2-Lz-Sz eigenstate must commute with these
symmetry operators on the two-particle space. Reconsider,
for instance, the 7S states of chromium with configuration
�Ar�3dj4s4pk4d�, where j+k+�=5. A general spinless RDM
with orbitals up to 4d has � 23+1

2
�2=76 176 entries. By con-

trast, the 142=196 RDMs of the 14 7S states with Sz maximal
and Lz=0 turn out to have, on average, only 94.3 nonzero
entries, the maximum number of nonzero entries which oc-
curs being 648.

VII. ANOMALOUS FILLING OF 4s AND 3d ORBITALS
IN TRANSITION METAL ATOMS

We have applied the algorithmic framework reported
above to the calculation of ground and excited states and
levels in 3d transition metal atoms. These continue to offer
substantial computational challenges, due to the irregular
filling of 4s versus 3d orbitals, strong correlations, and non-
negligible relativistic effects.

Previous computations have led to different results, de-
pending on the level of theory used. Limitations of single-
determinant Hartree–Fock theory for these atoms are dis-
cussed in Ref. 11. Multideterminant Hartree–Fock �HF�
energies for the experimental ground state configurations
�but not for competing configurations� are given in Ref. 23
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�with the exception of Cr�, Ref. 24 �only for atoms with
anomalous filling such as Cr�, and Ref. 25. The interconfigu-
rational ordering of 4s13dn versus 4s23dn−1 is discussed in
Ref. 12 for relativistic HF and in Refs. 13 and 14 for DFT.
Among the transition metal series Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, relativistic HF rendered 4s1 stable for Cr, Mn, Fe, Ni,
and Cu, even though experimentally only Cr and Cu have a
4s1 ground state. �In fact, for Ni, the experimental classifica-
tion as 4s2 should be viewed with some caution. A look at the
actual data26 shows that for Ni, relativistic J splittings are of
the same order as the interconfigurational gap, and while the
experimental ground state is a particular J state of the 4s2

�3F� configuration, 4s1 �3D� would become stable if one av-
erages over J according to multiplicity.� DFT does not fare
better, regardless of the type of exchange-correlation func-
tional used: 4s1 is rendered stable by Becke 88 for Ti, V, Cr,
Ni, and Cu,14 by the local density approximation and
Perdew–Wang for V, Cr, Co, Ni, and Cu,13,14 and by B3LYP
for V, Cr, Co, Ni, and Cu.14 The poor atomization energies of
DFT functionals such as Becke 88 and B3LYP for transition
metal dimers �those for Cr2 even come out with the wrong
sign� have been associated14 to poor interconfigurational en-
ergies of the atoms. It is then of interest to revisit the latter
from alternative theoretical points of view.

Our results for the asymptotics-based CI model �A�–�C�
in Sec. II C are as follows. First, we considered a minimal
model for the third period elements K to Zn with configura-
tions �Ar�3dj4sk, that is to say in the language of Sec. II C,
we choose the cutoffs

�n,��min = �3,1� = 3p, �n,��max = �4,0� = 4s .

It turns out that the ground states from Ca to Zn always put
two electrons in the 4s subshell, i.e., have configuration
�Ar�3dj4s2 �see Table II�. Thus minimal asymptotics-based
CI coincides with the empirical Madelung rule �which states

that the subshells are filled in the order of increasing n+�
and, for equal n+�, in the order of decreasing n�. Experi-
mentally, this means that the method fails for the two anoma-
lous atoms Cr and Cu.

Next, to address this issue we enlarged the CI subspace
for the series Ca, Sc, Ti, V, Cr by the higher subshells 4p and
4d. That is to say we changed the cutoffs to

�n,��min = �3,1� = 3p, �n,��max = �4,2� = 4d ,

hence including all configurations �Ar�4dj4sk4p�4dm and re-
stricted to k=1 �4s1� and k=2 �4s2�, respectively. In each
case, we considered only the L and S values selected by
Hund’s rules �i.e., we minimized first S and then L, taking
into account one s and d subshell as in the minimal model
above�, computed the corresponding symmetry subspaces via
the algorithm in Sec. III B, and determined the associated
eigenstates and energy levels. The results are shown in
Table III.

Despite the smallness of the radial basis set, the pre-
dicted ground state configurations and spin and angular mo-
mentum quantum numbers are in full agreement with the
experimental data. Physically, interesting insights can be
gained from the orbital exponents in Table III and from the
coefficients of the different configurations contained in the
ground state. First, for Ca, the 4s electron is more tightly
bound than any d electrons, whereas for Sc, Ti, V, and Cr,
this effect is reversed in both the 4s1 and the 4s2 configura-
tion, with 4s outside of both 3d and 4d. Second, considering,
for instance, the 4s1 �7S� Cr ground state, the configurations
and weight coefficients of the 14 contributing basis states
spanning the 7S, mL=0, and mS=3 symmetry subspace of
3dj4s14p�4dm are as follows:

TABLE II. Ground state symmetries and energies from K to Zn predicted by minimal asymptotics-based CI �this paper� with active space �Ar�3dj4sk and
compared to experimental data �Ref. 26�. Boldface denotes deviation from experiment. The dimension of the joint eigenspace of the symmetry operators �5�
which contains the unique ground state with Lz=0 and Sz maximal is denoted by dim. Also shown are multi-determinant Hartree–Fock energies for the
experimental ground state symmetries �Ref. 25� �for Ti and Cr, see also Refs. 24 and 27�.

Atom

Symmetry

dim �subspace�

Energy
�a.u.�

CI exp CI Exp MDHF

K 2S 2S 1 �596.7993 �601.9337 �599.164 78
Ca 1S 1S 2 �674.2442 �680.1920 �676.758 18
Sc 2D 2D 4 �756.8908 �763.8673 �759.735 71
Ti 3F 3F 5 �845.1599 �853.3503 �848.405 99
V 4F 4F 4 �939.1657 �948.8394 �942.884 33
Cr 5D 7S 3 �1039.0409 �1050.4914 �1043.3563
Mn 6S 6S 1 �1144.9715 �1158.2670 �1149.8662
Fe 5D 5D 1 �1256.7813 �1271.6930 �1262.4436
Co 4F 4F 2 �1374.8903 �1393.3526 �1381.4145
Ni 3F 3F 1 �1499.3759 �1520.6907 �1506.8709
Cu 2D 2S 1 �1630.3692 �1655.1317 �1638.9637
Zn 1S 1S 1 �1768.0729 ¯ �1777.8481
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3d54p04d0 0.36
3d44p04d1 0.63
3d34p24d0 0.056

3d34p04d2 �2D� 0.31 and 0.50
3d24p24d1 �2D� 0.036 and 0.038
3d24p04d3 �2D� 0.17 and 0.28
3d14p24d2 �2D� 0.016 and 0.014

3d14p04d4 0.096
3d04p24d3 0.0036
3d04p04d5 0.012

In particular, no configuration dominates and the highest
weight configuration is not the naively expected 3d5 which
one would enforce in both single-determinant HF and �L-S
adapted� multi-determinant HF, but 3d44d1 �weight 0.63�,
followed by 3d34d2 �0.59�, 3d5 �0.36�, and 3d24d3 �0.33�.
The highest-weight Cr 7S basis function in which one of the
3d electrons has migrated to a 4d orbital is

��3d23d13d03dn14s4dn2	 − �3d23d13d03dn24s4dn1	

+ �3d23d13dn13dn24s4d0	 − �3d23d03dn13dn24s4d1	

+ �3d13d03dn13dn24s4d2	�/�5,

with expressions of similar type for the remaining 13 basis
functions. Despite the simple treatment of radial orbitals
here, our results provide clear evidence of strong 3d-4d in-
tershell correlations in Cr, and suggests �by comparing ener-
gies of Tables II and III� a huge, symmetry-reversing, corre-
lation energy in Cr of the order of 1 a.u.

For more quantitative conclusions, the radial basis set
used here is too small, as is illustrated by our systematically
higher energies compared to the large-basis MDHF energies
in Table II. Our results constitute, however, an important step
toward an accurate quantitative computation of the correla-
tion energy. The remaining step, which lies beyond the scope
of the present paper, is to combine the exact lowest symme-
try subspaces delivered by our symmetry reduction algorithm

with high-accuracy, multiparameter, self-consistent radial or-
bital optimization routines as have been developed for
Hartree–Fock theory.3,24,25,28

VIII. CONCLUSIONS

We have developed and implemented an algorithm for
CI calculations for atoms which allows full resolution of
valence electron correlations in a large active space, via ef-
ficiently automated �and exact� symmetry reduction. Appli-
cation to 3d transition metal atoms shows that even very
small radial basis sets yield the correct qualitative picture of
the electronic structure when all correlations within and be-
tween the 3d, 4s, 4p, and 4d shells are fully resolved and
when orbital exponents are optimized self-consistently for
the actual CI wave functions. We trace the qualitative accu-
racy of our results partly to the theoretical fact that the
asymptotics-based CI method used here yields the correct
leading-order asymptotics for the low-lying spectral gaps in
the fixed-N, large-Z limit.

In subsequent work, we aim to obtain an accurate quan-
titative picture, by combining the careful algorithmic treat-
ment of correlations introduced here with suitable large-
parameter orbital optimization routines as are used in
�numerical or Roothaan-type� Hartree–Fock theory.
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