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Stripe order from the perspective of the Hubbard model
Edwin W. Huang1,2, Christian B. Mendl2, Hong-Chen Jiang2, Brian Moritz2,3 and Thomas P. Devereaux2,4

A microscopic understanding of the strongly correlated physics of the cuprates must account for the translational and rotational
symmetry breaking that is present across all cuprate families, commonly in the form of stripes. Here we investigate emergence of
stripes in the Hubbard model, a minimal model believed to be relevant to the cuprate superconductors, using determinant
quantum Monte Carlo (DQMC) simulations at finite temperatures and density matrix renormalization group (DMRG) ground state
calculations. By varying temperature, doping, and model parameters, we characterize the extent of stripes throughout the phase
diagram of the Hubbard model. Our results show that including the often neglected next-nearest-neighbor hopping leads to the
absence of spin incommensurability upon electron-doping and nearly half-filled stripes upon hole-doping. The similarities of these
findings to experimental results on both electron and hole-doped cuprate families support a unified description across a large
portion of the cuprate phase diagram.
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INTRODUCTION
The lack of an analytic solution to the Hubbard model in two-
dimensions has led to development of various numerical
methods to study its low temperature and ground state proper-
ties. Calculations to benchmark these techniques have revealed
that different candidate ground states all lie close in energy,1,2

with small differences possibly associated with specific aspects of
each method. Density matrix renormalization group, exact
diagonalization/dynamical mean-field theory, constrained path
auxiliary field Monte Carlo, infinite projected entagled-pair states,
and density matrix embedding theory all find evidence for
stripes,1–7 having stronger amplitudes and longer correlation
lengths than d-wave superconductivity. However, dynamical
cluster approximation and cellular dynamical mean-field theory
calculations have not shown evidence for stripes, instead finding
a finite temperature transition into a d-wave superconductor.8–13

These seemingly different ground states with similar energies
reflect a delicate balance, sensitive to the specific nuances and
biases of each approach.
Numerically discerning energy differences to ascertain low-

temperature properties requires rigorous effort to eliminate
biases, and techniques may or may not reveal true ground states
if the treatments are variational. On the other hand, provided that
fluctuating orders are appreciable, calculations at higher tem-
peratures provide an alternative perspective and carry the benefit
that shortened correlation lengths reduce finite size effects. Here
we use determinant quantum Monte Carlo (DQMC), an exact
finite temperature technique, for this purpose. Although the
fermion sign problem sets a lower bound on the range of
temperatures amenable to simulation, we show that fluctuating
stripe order is nevertheless observable at accessible
temperatures.

RESULTS
We first describe the doping dependence of spin correlations for
the Hubbard model with interaction strength U/t= 6 and next-
nearest-neighbor hopping t′/t=−0.25, where t is the nearest-
neighboring hopping. Figure 1 displays the real space, equal-time
spin–spin correlation functions obtained from finite temperature
DQMC simulations on 16 × 4 clusters with periodic boundary
conditions. At half-filling (Fig. 1a), antiferromagnetic spin correla-
tions are evident from the checkerboard pattern, or equivalently
from the uniform phase of the staggered spin–spin correlation
functions (lower portion of Fig. 1a), defined with a (π, π) phase
factor that flips the sign of the correlation function on every other
site. Hole-doping (Fig. 1b, p= 0.042) first induces a decrease in
correlation length, followed by development of antiphase
domains with increasing hole concentration. The size of each
domain is inversely proportional to the hole doping level; and for
p ≥ 0.125, multiple sets of antiphase domain walls become visible
for this cluster geometry and size. This behavior, qualitatively and
quantitatively similar to previous findings for the three-band
Hubbard model,14 demonstrates that stripe behavior at finite
temperatures emerges in the Hubbard model through incom-
mensurate spin correlations. To ensure that these findings are not
artifacts of the anisotropic cluster geometry, we present and
discuss results for a square geometry in Fig. S1 of the
Supplementary Materials.
Previous finite-temperature calculations of the Hubbard model

failed to demonstrate spontaneous development of either spin or
charge incommensurability, absent imposing inhomogeneity from
external fields not part of the original model (e.g., see refs.15,16). In
light of the results presented here, a necessary ingredient appears
to be large enough clusters capable of supporting multiple stripe
domains. While calculations utilizing small clusters (, N= 8) have
been used to demonstrate antiferromagnetism, superconductivity,
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and pseudogap physics,8,13,17 their inability to host incommensu-
rate states leaves open important questions regarding the
interplay of stripes with the aforementioned orders.
In contrast to these previous finite temperature findings, zero-

temperature calculations, from a variety of methods, have
indicated striped ground states in the Hubbard model. A recent
comparison found close agreement in the ground state energies
using four different techniques,2 providing evidence for period-8
stripes in the ground state of the 1/8-hole-doped Hubbard model
with only nearest-neighbor hopping (t′= 0) and canonical
interaction strength (U/t= 8, the non-interacting bandwidth).
Instead, our findings show stripes with a period ~5 for 1/8 hole-
doping (Fig. 1b, p= 0.125), in better agreement with experimental
results on cuprates.18–20

To understand these differences, we study the impact of
varying the model parameters, starting with the next-nearest-
neighbor hopping t′, which induces a particle–hole asymmetry.
For t′=−0.1 and t′= 0, we find antiphase domain walls still
present, but with an increased period of ~8 for 1/8 hole-doping
(Fig. 2), similar to the previously mentioned results of ground state
calculations. In contrast, the period ~5 stripes from simulations

using a negative value of t′=−0.25 correspond well to neutron
scattering experiments where multiple hole-doped compounds
show incommensurablity corresponding to period 4–5 spin stripes
at 1/8 hole-doping.20 Also at 1/8 hole-doping, Fig. 2 shows the
staggered spin–spin correlation function for t′/t= 0.1 and t′/t=
0.25, equivalent to 1/8 electron-doping for negative t′. In contrast
to previous results, no antiphase domains are present and only
antiferromagnetism is visible. This is additionally corroborated by
our DMRG simulations in Fig. S2 of the Supplementary Materials.
As neutron scattering21,22 on electron-doped compounds similarly
finds only commensurate antiferromagnetic excitations at low
energy, our simulations show that a negative value of t′ that
properly captures the cuprates’ Fermi surface topology also
correctly describes the spin behavior in both directions of doping.
Variations in the interaction strength U make little direct impact

on the presence or periodicity of stripes. We first consider results
for the lowest temperature accessible to simulation. For U/t= 5, at
a temperature of T/t= 0.20, we again find period-5 stripes at 1/8
hole-doping (Fig. 3, top left). Increasing to U/t= 7 (Fig. 3, top right),
the worsened sign problem constrains the lowest accessible
temperature to T/t= 0.26. Here, the stripes instead have an
increased period of ~ 7. We attribute this to the change in
temperature: for the same ratio T/J= 0.45 of temperature to
exchange coupling, similar period ~ 7 domains are present for U/t
= 5 and U/t= 6 (Fig. 3, second row). At U/t= 8, the sign problem is
too severe to achieve temperatures of T/J= 0.45, but at accessible
temperatures we find no indication of different behavior. The
similarities between these results for the same T/J imply a marginal
role of the value of U, at least in the range of explored values.
Generally, with increasing temperatures we find slight increases

in stripe period and substantial reduction in correlation length
(Fig. 3). This is consistent with neutron scattering data on
La1.875Ba0.125CuO4 (LBCO), where spin incommensurability (inver-
sely proportional to the period) decreases with increasing
temperature.19 In our data, reduced correlation lengths at higher
temperatures make it increasingly difficult to see π-phase shifted
domains in correlation functions. At the temperature T/J= 0.75,
nearly all correlations expected from the nearest π-phase shifted

Fig. 1 a Spin correlation functions in the Hubbard model with
parameters U/t= 6, t′/t=−0.25 obtained by DQMC simulations at
temperature T/t= 0.22. Top: Spin correlation functions at 0 doping.
Bottom: staggered spin correlation functions, with signs flipped on
every other site, of the same data. b Staggered spin correlation
functions for various hole doping levels. Dashed green lines indicate
approximate locations of antiphase domain walls. Correlations
showing a + or − sign are nonzero by at least two standard errors

Fig. 2 Staggered spin correlation functions from DQMC at p= 0.125
hole doping, U/t= 6, and T/t= 0.22 for various values of t′
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domain have magnitude within the simulations’ sampling error.
However, since sampling error is dependent on the length of the
Monte Carlo simulation, the temperature that roughly delineates
where stripes are visible should not necessarily be interpreted as
an onset temperature.
The temperatures of our simulations correspond to that of the

strange metal regime in cuprate phase diagram. Recent hydro-
dynamic studies have proposed fluctuating charge or spin density
waves as a source of bad metallic behavior.23,24 Future work via
similar finite temperature quantum Monte Carlo simulations could
address these potential connections between fluctuating stripes
and possible signatures of strange metal physics.
We additionally compare our finite-temperature DQMC results

to zero-temperature DMRG calculations25 for the same model
parameters and lattice geometry with cylindrical boundary
conditions. Figure 4 displays the spin–spin correlation function
and density profile from both techniques. Each shows anti-phase
domains characteristic of spin stripes (Fig. 4a, b), with period-4
stripes at T= 0 and period-5 stripes at T/t= 0.22. The correlations
at zero temperature (Fig. 4a) show immobile anti-phase domain
walls that are pinned by the open boundaries. At finite
temperatures, we observe short-ranged and mobile antiphase
domain walls, as evidenced by their tendency to follow the
reference spin position on the cluster, as expected from
fluctuating stripes (Fig. 4b). This contrasting behavior is evident
in the density profiles as well (Fig. 4c, d), where zero-temperature
DMRG results reveal a static charge density wave, with peaks and
troughs in the electron occupation coinciding with the antiphase
domains, in agreement with the long-established picture of stripes
known from the earliest mean-field studies.26,27 The finite
temperature DQMC results instead show only minor modulation
of the occupation due to boundary effects, without any indication
of static charge order.
Finally, to understand the dynamical properties associated with

spin stripes, we use the maximum entropy method (MEM) for
analytic continuation28,29 to extract the dynamical spin structure
factor S(Q, ω) from the finite temperature, unequal-time spin–spin
correlation function obtained using DQMC. At zero doping (Fig.
5a), the dispersion is conical around (π, π), as expected for
antiferromagnetism. Upon hole doping to p= 0.125 (Fig. 5b), the
most drastic change is hardening and loss of spectral weight at (π,
π), as expected when antiferromagnetism is no longer dominant.
While the spin excitations at the closest wavevectors accessible to
our cluster (7π/8, π) and (9π/8, π) exhibit similar behavior, the
excitations at (3π/4, π) and (5π/4, π) instead soften. This change is

also reflected in zero-energy spin structure factor, which shows
two peaks (Fig. 5b, bottom) split from (π,π). In neutron scattering
experiments on hole-doped cuprates, low-energy incommensu-
rate peaks at these wavevectors near (π,π) are found and
interpreted as evidence for stripes.30–32 Although our data do
not resolve sharp peaks as in neutron scattering data, which are
taken at far lower temperatures, the agreement with the real-
space data of Fig. 1 strongly supports that doping induces not
only weakened antiferromagnetism but also incommensurate spin
correlations.
As in Fig. 2, we study the effect of t′ by fixing the doping at p=

0.125 and varying t′/t from −0.25 (Fig. 5b) to 0 (Fig. 5c) and 0.25
(Fig. 5d). At t′/t= 0, similar behavior is present as in t′/t=−0.25,
but with a significantly smaller separation of the two low-energy
peaks. This is consistent with our real-space data in Fig. 2 that
shows increased stripe period for t′/t= 0. In contrast, for positive
t′/t= 0.25, low-energy spectral weight is evidently centered at
(π, π), in agreement our previous real-space results in Fig. 2 that

Fig. 3 Staggered spin correlation functions from DQMC at p= 0.125 hole doping and t′/t=−0.25 for various values of U and T. J= 4t2/U is the
leading order approximation of the exchange coupling constant. In the top row, the temperature is set to T/t= 0.20 (T/J= 0.25), T/t= 0.22 (T/J
= 0.33), and T/t= 0.26 (T/J= 0.45) for U/t= 5, 6, 7, respectively

Fig. 4 a, b Staggered spin correlation functions with open left and
right boundaries and periodic vertical boundaries, directly compar-
ing a zero-temperature DMRG results with b DQMC calculations at
finite temperature (T/t= 0.22) using identical Hubbard model
parameters (U/t= 6, t′/t=−0.25). Boxes indicate reference site i
and axes indicate the position of site j of the correlation function
SzðiÞSzðjÞh i. Correlations showing a + or − sign are nonzero by at
least two standard errors. c, d Electron density profiles for DMRG
and DQMC as functions of the horizontal position, averaged over
equivalent vertical sites. Standard errors in (d) are ~2.5 × 10−5
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spin correlations are predominantly antiferromagnetic for t′/t=
0.25. Subject to the limited momentum resolution of our
calculation, the low-energy behavior seen here is reminiscent of
the commensurate excitations at (π, π) seen in electron-doped
cuprates.21,22

DISCUSSION
We have presented the first unbiased study demonstrating
fluctuating spin stripes in the Hubbard model at finite tempera-
tures. Without applying external fields, we observe incommensu-
rate spin correlations for a wide range of hole-doping at
temperatures below roughly T/J < 0.7. We study the stripes’
dependence on kinetic frustration (t′), finding that a value
appropriate for cuprates (t′/t=−0.25) captures the experimentally
observed doping asymmetry in the spin incommensurability. This
result provides a simple resolution, without non-local Coulomb
interactions, for the mismatch between experimental data on
cuprates and ground-state calculations of the t′= 0 Hubbard
model.
The role of kinetic frustration for stripes may be understood

from a strong-coupling perspective where magnetic moments are
localized. Consider first the Hubbard model with only nearest
neighbor hopping. When doped, a stripe state is more favorable
than a uniformly doped antiferromagnetic state. In the former,
virtual hopping of holes on antiphase domain walls preserves the
local antiferromagnetism of stripe domains; in the latter, the
motion of each individual hole leaves behind a trail of frustrated
spins. The contribution of diagonal next-nearest neighbor hop-
ping is the opposite: diagonal motion of individual holes in an
antiferromagnetic background does not magnetically frustrate,
but diagonal motion of holes in a stripe state breaks up the stripes
and also frustrates the local antiferromagnetism. Thus, when
diagonal motion becomes more energetically favorable (i.e., larger
values of t′/t), the system tends more toward a uniform
antiferromagnetic state. This is precisely what our simulations
demonstrate in Fig. 2; as t′/t is adjusted from −0.25 to +0.25, the
stripes grow in period until only uniform antiferromagnetism is
present.
In our DMRG calculations, we find interlocked spin and charge

stripes in the ground state of the simulated cluster. In contrast, for
DQMC calculations using the same parameters and cluster we see
instead only fluctuating and unpinned spin stripes down to the
lowest accessible temperatures. Taken together, these results

suggest that in the Hubbard model, static charge order sets in at
temperatures beyond the scope of DQMC.
While incommensurate spin and charge density waves are

present among multiple hole-doped cuprate families, interlocked
stripes have been seen only in La-based compounds. In other
compounds, while the charge ordering has wavevector (and
hence periodicity) in the same range as that of La-based cuprates
and is similarly pronounced around 1/8-doping, the doping
dependence differs.33 In La-based cuprates, both charge ordering
wavevectors and spin incommensurability (periodicities) increase
(decrease) with doping. For other compounds, and possibly LBCO
at higher temperatures,34 the charge ordering wavevector
decreases with doping while the spin incommensurability, in
observed cases, increases,20 indicating decoupling of charge and
spin ordering. Microscopic model calculations, such as the DMRG
results presented here, demonstrate behavior similar to that in La-
based cuprates. To date, the diverse and materials-specific
behavior of charge ordering in the cuprates has not been
captured in such calculations.
The growth of modern computing power combined with recent

developments in computational techniques has allowed for
significant progress toward understanding static properties of
the Hubbard model.2 However, to connect with experimental
results, it has become necessary to determine and benchmark the
dynamical properties. Here, our calculation of the dynamical spin
structure factor captures both the fall-off of antiferromagnetism
and the development of low-energy incommensurate peaks
indicative of stripes. As our spectra’s resolution is ultimately
limited by cluster size and temperature, both of which are severely
constrained by the fermion sign problem, development of new
techniques and algorithms capable of calculating dynamics in
larger-scale simulations will allow for a closer comparison against
data from neutron and X-ray scattering experiments on the
cuprates.

METHODS
Hubbard model
The Hubbard model Hamiltonian is

H ¼ �
X
ijσ

tijc
y
iσcjσ þ U

X
i

n̂i"n̂i# � μ
X
iσ

n̂iσ (1)

where cyiσ (ciσ) creates (annihilates) an electron with spin σ at site i;
n̂iσ ¼ cyiσciσ ; the hopping amplitude tij is equal to t (the simulation energy
scale) if i and j are nearest-neighbors and equal to t′ for next-nearest

Fig. 5 Dynamical spin structure factor S(Q, ω) along Qy= π calculated from the DQMC simulations of Figs. 1 and 2. Common parameters for
(a–d) are U/t= 6 and T/t= 0.22. The doping and next-nearest-neighbor hopping are a p= 0, t′/t=−0.25, b p= 0.125, t′/t=−0.25, c p= 0.125,
t′= 0, and d p= 0.125, t′/t= 0.25. J= 4t2/U ≈ 0.67t is the leading order approximation of the exchange coupling constant. Top: False color
maps of S(Q, ω). Green dots are peak positions at each wavevector. Bottom: S(Q, ω= 0). Lines are fits to either single (a, d) or double (b, c)
Lorentzian peaks
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neighbors; U is the on-site repulsive Coulomb interaction; and the chemical
potential μ controls the doping level.

Determinant quantum Monte Carlo
We perform DQMC simulations on the Hubbard model35,36 with
parameters U/t and t′/t and temperature T/t as indicated in the
corresponding text and figure captions. The chemical potential is tuned
to achieve the desired doping level to within an accuracy of O(10−4). The
imaginary time interval [0, β] is partitioned into steps of size 0.07 < Δτ <
0.12, resulting in a negligible Trotter error for our parameters.
To ensure numerical stability in computing the equal-time Green’s

functions, we use the prepivoting stratification algorithm as described in
ref. 37, allowing up to 8 matrix multiplications before performing a QR
decomposition. The unequal-time Green’s functions are constructed using
the Fast Selected Inversion algorithm described in ref. 38, with blocks
corresponding to the product of matrices from eight time steps.
Equal-time measurements are performed 20 times per full space-time

sweep. As computing the unequal-time Green’s function is of comparable
computational cost as a Monte Carlo sweep, unequal-time quantities are
measured every 4th sweep. For each Markov chain, we use 50,000 sweeps
for warmup and 1,000,000 sweeps for measurements. Between 2000 and
60,000 independently seeded Markov chains are used for each parameter
set. This large amount of data allowed for excellent statistics despite the
severe fermion sign problem: standard errors in the plotted spin
correlation functions are O(10−6) while the average sign dipped as low
as ~0.015 for p > 0.1.

Density matrix renormalization group
Using the same model parameters, we perform the standard DMRG
simulations25 with up to 26 sweeps and keep up to m= 10,000 DMRG
block states with a typical truncation error of 2 × 10−6 per step. This leads
to excellent convergence for the results that we report here.

Equal-time spin–spin correlation function
The equal-time spin–spin correlation function is

SzðiÞSzðjÞh i; (2)

where Sz(i)= 1
2 n̂i" � n̂i#
� �

is the z-component of spin on site i. To reduce
statistical errors, we average correlations over pairs of sites equivalent by
the translation and reflection symmetries of the cluster.

MEM analytic continuation
The imaginary time susceptibility is obtained by Fourier transforming the
imaginary time spin–spin correlation function TτSzði; τÞSzðj; 0Þh i measured
in DQMC. It is related to the real frequency susceptibility by

χðQ; τÞ ¼
Z 1

0

dω
π

e�τω þ e�ðβ�τÞω

1� e�βω
ImχðQ;ωÞ (3)

The dynamical spin structure factor is calculated by the
fluctuation–dissipation theorem, which simplifies to

SðQ;ωÞ ¼ ImχðQ;ωÞ
1� e�βω

(4)

Since inverting Eq. (3) is numerically ill-posed, we use Maximum Entropy
analytic continuation28 to extract Imχ(Q, ω) from the DQMC data. The
classic variant of MEM is used with Bryan’s method for optimization. A
Lorentzian centered at 2J with width 1J is chosen as a minimally
informative model function with the expected high-frequency decay.

Error analysis
For our DQMC data, we use jackknife resampling to calculate standard
errors. For the analytically continued spectra, we verify the repeatability
and reliability of the MEM procedure by repeating the calculation on
disjoint sets of data bins.

Data availability
The data that support the findings of this study are available from the
corresponding author upon reasonable request.
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