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Abstract

Out-of-time ordered (OTO) correlation functions describe scrambling of information in correlated
quantum matter. They are of particular interest in incoherent quantum systems lacking well defined
quasi-particles. Thus far, it is largely elusive how OTO correlators spread in incoherent systems with
diffusive transport governed by a few globally conserved quantities. Here, we study the dynamical
response of such a system using high-performance matrix-product-operator techniques. Specifically,
we consider the non-integrable, one-dimensional Bose—Hubbard model in the incoherent high-
temperature regime. Our system exhibits diffusive dynamics in time-ordered correlators of globally
conserved quantities, whereas OTO correlators display a ballistic, light-cone spreading of quantum
information. The slowest process in the global thermalization of the system is thus diffusive, yet
information spreading is not inhibited by such slow dynamics. We furthermore develop an
experimentally feasible protocol to overcome some challenges faced by existing proposals and to
probe time-ordered and OTO correlation functions. Our study opens new avenues for both the
theoretical and experimental exploration of thermalization and information scrambling dynamics.

Dynamical correlations of many-body quantum systems provide direct information about many-body
excitations [1], describe quantum phases and transitions [2], and characterize certain topological aspects [3, 4].
The dynamical response of a many-body system to alocal perturbation is obtained from a time ordered
correlation function, (W (t) V (0) ), which describes the relaxation of the many-body system following the initial
excitation by the operator V that is then probed at later times by W. However, in general such time-ordered
correlation functions cannot capture the spread of information across a quantum system, especially in a regime
where quasiparticles are not well-defined.

Recently, it has been proposed that spreading or ‘scrambling’ of quantum information across all the system’s
degrees of freedom can be characterized by out-of-time ordered (OTO) correlation functions:
<WT (1) I (0)W () V (0)) [5-10]. These correlation functions appear as the OTO part of (| (W (1), V (0)] ?)and
hence predict the growth of the squared commutator between W (t) and V (0). OTO correlators could thus be
capable of describing a quantum analog of the butterfly effect in classical chaotic systems, which characterizes
the spread of local excitations over the whole system. At short times, OTO correlators are expected to grow
exponentially with a rate characterized by the Lyapunov exponent A; . The Lyapunov exponent has been
conjectured to be bounded by 0 < Ay < 27T [9]. This bound is saturated in strongly coupled field theories with
agravity dual [6] and in disordered models describing a strange metal [7, 11, 12]. By contrast, Ay does not fully
saturate the bound for a critical Fermi surface [13] and is parametrically smaller in Fermiliquids or other weakly
coupled states [12, 14, 15].

©2017 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft
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Figure 1. Dynamical correlation functions in the incoherent transport regime. (a) Out-of-time ordered (OTO) correlators measure
the scrambling of information across a quantum state. We compute OTO correlators F(t) = (cj+ (1) cf ¢j(t)c;) inthe 1D Bose—
Hubbard model at high temperature T' = 4] for interactions U = J, chemical potential ;x = 0, and systemsize L = 30. In the high
temperature regime, well-defined quasiparticles cease to exist. However, the OTO correlator F;; exhibits a light-cone spreading of
information. (b) The breakdown of well-defined quasiparticles is demonstrated by the one-particle Green’s function

Gi(t) = <c]T (t)ci), which quickly decays to zero within 7] ~ 0.6. The lifetime is thus shorter than the hopping rate, indicating a
regime of incoherent transport.

Here, we study both time-ordered and OTO correlators in a diffusive many-body system by considering the
concrete example of the non-integrable, one-dimensional Bose—Hubbard model. Thus far, it is a largely open
question, how OTO correlators spread in diffusive systems with a few globally conserved quantities [10, 13, 15, 16]. In
our work, we study this question by performing matrix-product operator (MPO) based simulations of the Bose—
Hubbard model at high temperatures, at which well defined quasi-particles cease to exist. We demonstrate that in this
regime the time-ordered one-particle correlation functions are strongly incoherent and feature rapidly decaying
excitations, whereas the OTO correlators indeed describe the ballistic spreading of information across the quantum
system (see figure 1). In contrast to the linear light-cone spreading of quantum information, the eventual global
thermalization of the closed system takes parametrically longer, due to hydrodynamic power-laws resulting from
globally conserved quantities. For example, we show that the local density correlation function decays as ~1,/+/Dt,
describing diffusion in one dimension with the corresponding diffusion constant D. Thus, the time scales associated
with the spread of information and with global thermalization are different.

Despite their usefulness to characterize interacting many-body systems theoretically, it remains a challenge
to experimentally measure such dynamical correlation functions in real space and time [17, 18], as required to
observe information spreading. Here, we propose generic experimental protocols to characterize both time-
ordered and OTO correlators via local many-body interferometry. Our proposal to measure OTO correlators is
unique because it overcomes some of the challenges that recently proposed protocols exhibit at finite
temperatures and because it eliminates the scaling problems associated with global many-body interferometry
[19, 20]. Furthermore, our protocol does not require an ancillary atom to switch between different system
Hamiltonians [21-23] and directly works with massive bosonic and fermionic particles (see also [24—28]). We
show that our protocol not only enables the measurement of dynamical correlation functions but also rather
generic static correlation functions (including off-diagonal ones), thus opening the way for a full state-
tomography of many-body quantum states.

1. Results

We study dynamical correlation functions of the one-dimensional Bose—~Hubbard model focusing mainly on the
incoherent intermediate to high temperature regime. The Hamiltonian of the system is given by
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where Jis the tunneling matrix element, U the interaction strength, and x the chemical potential. The bosonic
creation (annihilation) operator on site i is denoted as cf (¢;) and the local particle number operator is 7i; = cf ci.

At zero temperature and commensurate filling, the Bose—Hubbard model exhibits a quantum phase
transition from a gapped Mott insulating phase with short range correlations at strong interactions to a
compressible superfluid phase with power-law correlations at weak interactions [29]. At finite temperatures the
system is a correlated, normal fluid. We compute the dynamical correlation functions at finite-temperature for
systems up to L = 50 sites using MPO techniques. The presented results are evaluated for virtual bond
dimension 200-400 and the local bosonic Hilbert space is truncated to three states, which is sufficient to render
the system nonintegrable. The presented results are checked for convergence with respect to the MPO bond
dimension and system size; see methods 3.1 for details on the numerical simulations.

1.1. Spread of quantum information

Recently, OTO correlation functions have been proposed as a useful diagnostic tool to quantify the dynamical
spreading of quantum entanglement and quantum chaos in many-body systems. OTO correlators describe the
growth of the commutator between two local operators W and V in time

C(t) = —([IW (1), V(0)]). )

In a semiclassical picture, the commutator in equation (2) can be replaced by Poisson brackets. Then, for the
choiceof W = P andV = ;> this quantity reduces to C (t) ~ ((6pj (1) / 9q;(0))?). Therefore, the correlation
function C(f) describes the sensitivity of the time evolution and is expected to grow exponentially at short times
~ exp[ A t], with arate Aj, that resembles the Lyapunov exponent in classical chaotic dynamics. Rewriting these
momenta and coordinates as combinations of creation and annihilation operators, equation (2) generically
consists of OTO correlators of the form

Fi(t) = (c] ()¢ ¢ () ci). v

Below we mainly consider the quantum statistical average (...) = tr[p ... ] over an initial thermal state with
weights distributed according to the Gibbs ensemble p = e~/T/Z where Z is the partition function and we set
the Boltzmann constant kg to one. Alternatively, the average can also be performed with respect to an arbitrary
initial state, for example a pure state p = |t)g) (1| For thermalizing systems, it is then expected that an effective
temperature is approached at late times which depends on the energy density imprinted on the system by the
initial state [30-32].

OTO correlators F;; evaluated at comparatively high temperatures T = 4/, interactions U = ],and
chemical potential ;¢ = 0 are shown in figure 1(a) as a function of time tand distance (i — j); for OTO
correlators in the coherent Luttinger Liquid regime see [33]. Despite the high temperature, the OTO correlator
JFij unveils a pronounced light-cone spreading of the information across the quantum state for |i — j| < 7. For
larger distances the light cone seems to exhibit a plateau, which we, however, attribute to the finite MPO bond
dimension considered in the numerical simulations; see methods 3.1. OTO correlators are in that respect
challenging to simulate with MPO techniques, because they directly reflect the fast spreading of entanglement.

The OTO correlator F(¢) should be contrasted to the time-ordered single-particle Green’s function

Gii(t) = <CJT ®)ci)s (4)

which is shown in figure 1(b). In the incoherent transport regime, where well-defined quasiparticles do not exist,
the Green’s function G;;(t) rapidly decays in time. Therefore, it is not capable of characterizing the spread of
quantum information or entanglement across the state which is generically not linked to the transport of quasi-
particles [34]. For the chosen parameters (U = J, u = 0, T = 4]), we find that the quasiparticle lifetime is
approximately 7/ ~ 0.6 and hence shorter than the microscopic hopping rate, which indicates incoherent
transport. By contrast, the OTO structure of F;(t) reveals a well defined linear spread of quantum information
despite the high temperature.

We now characterize the OTO correlators F;(t) in detail. To this end, we subtract (/1; ;) from the 7;(¢) and
consider its relative change: Fj;(t) = |;(t) — (i) | / (f1;7j). Examples for the reduced OTO correlator F i(®)
are shown in figure 2 for interaction U = Jand different temperatures T. The reduced OTO correlator F fj(t)
starts off at zero, forms the light-cone plateau, and approaches the steady-state value as an exponential.

From the light-cone spread of the OTO correlator, we extract two velocities (figure 3(a)): (1) the light-cone
velocity vic, which we define by the space—time region where the reduced OTO correlators F7;(¢) surpasses a
small threshold of 0.05% of its final value. (2) The butterfly velocity vy, which we define by the space—time region
where the OTO correlator attains a large fraction (20%) of its final value. We find that vi, does not significantly
depend on this cutoff, as long as it is chosen to a sizeable fraction; see methods figure 7. The light cone velocity vi
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Figure 2. Light-cone spreading of quantum information. Contour plots of the reduced OTO correlator

Fii(t) ~ |Ft) — (A;;) | / (A7) as a function of time and distance for interaction strength U = J, chemical potential ;1 = 0, and
temperature (a) T = 2J and (b) T = 16/, respectively. The spreading of quantum information forms a light-cone pattern. The
contour lines indicate changes of Fj;(¢) by 0.1.
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Figure 3. Characterizing the speed of information propagation. (a) Reduced OTO correlators J;(t) are shown as a function of time
for different distances |i — j|, interaction strength U = J, and temperature T = 4]. We introduce the light-cone velocity v by the
space—time region, where F" surpasses a small threshold and the butterfly velocity vy, where it attains a large fraction of order one. (b)
The light-cone velocity v|. grows with temperature and is bounded from below by the zero temperature Luttinger liquid velocity
(colored arrows). By contrast, the butterfly velocity v, is systematically smaller than v and approximately independent of
temperature T. The data is shown for two values of the interaction strength U = Jand U = 3].

increases with temperature Tand is bounded from below by the zero temperature Luttinger liquid velocity; see
figure 3(b). The butterfly velocity vy, is systematically lower than v and is almost independent of temperature.
The butterfly velocity determines the time scale #;., for scrambling information across the many-body quantum
state which is linear in system size ¢, ~ L/v},. Based on results from holography, it has been argued in [16] that
the light-cone and the butterfly velocity should be quite generally the same. This should be contrasted to our

4



I0OP Publishing NewJ. Phys. 19 (2017) 063001 A Bohrdtetal

0.25
&~ —a—U=]
5 02 —a— U |
\q —o— U=9J
/<
S, 0.15 1
S
-~ L 1
2 0.
<
N
§ 0.05 | ]
~
0
0 5 10 15 20
temperature T/J
Figure 4. Lyapunov exponent. The reduced OTO correlator F7;(t) is expected to grow exponentially on a timescale set by the butterfly
velocity vy, with a rate that defines the Lyapunov exponent Ar. In our system, the regime of exponential growth is restricted to a rather
small time range, see also figure 8. Our data suggests that the Lyapunov exponent ) is parametrically smaller than the conjectured
upper bound 27T and increases slowly as the temperature T'is lowered. The data is shown for interaction strength U = {1, 3, 9}J.

results for the Bose—Hubbard model and to a study of non-relativistic non-Fermi liquids [ 13]. In both cases the
butterfly velocity has been found to be smaller than the light-cone velocity. For details on the analysis of the OTO
correlators; see methods 3.2.

Previous studies of strongly coupled field theories [9] or disordered SYK models [7] predict an exponential
growth in the initial dynamics of the reduced OTO correlator of the form F'.(t) ~ exp[AL (t — x/vp)]with
butterfly velocity v, and a growth rate A, which is refered to as Lyapunov exponent. Both systems display a clear
separation between the collision time 7 and the scrambling time ¢, at which the OTO correlator assumes an
appreciably large value. Hence, in these systems the exponential growth occurs up to parametrically late times
determined by a large parameter N, which controls the approach to a semiclassical limit. We tested the results of
our numerical simulations against this prediction and find that they are incompatible with an exponential
growth in time inasmuch as there appears to be no parametrically large regime of exponential growth in our
model, see figure 3. This is a consequence of the average particle density, which is controlled by the chemical
potential, being typically on the order of one for the chosen parameters. This effectively restricts the accessed
local Hilbert space dimension and hence there is no large separation between collision and scrambling time [35].
Therefore, we cannot unambiguously define a Lyapunov exponent. Finding the analytic form for the initial
growth in our system remains an outstanding challenge.

Nonetheless, one can estimate a growth rate Ay by linearizing the OTO correlator around the space—time
region set by the butterfly velocity, which is shown as a function of temperature for different values of the
interaction strength U and chemical potential ; = 0 in figure 4. We note however that the concrete values for
the Lyapunov exponent depend on the space—time region around which we linearize, see figure 8. It has been
conjectured that the Lyapunov exponent is bounded by 27T, which is the value it assumes in a strongly coupled
field theory with a gravity dual [9]. In our system, Ay is parametrically lower than this bound and increases slowly
when lowering the temperature. Moreover, we find that the dependence of the Lyapunov exponent on the
interaction strength U'is small with slightly larger values of Ay for intermediate interaction strength, U = 3],
which is in the vicinity of the quantum critical point.

1.2. Thermalization

Closed quantum systems approach their global equilibrium only very slowly, due to the slow evolution of
observables that overlap with conserved quantities. In the Bose—Hubbard model (1), energy, lattice momentum,
and total particle number are conserved. From hydrodynamics we infer that, for example, the conserved particle
number leads to a diffusion equation of the density [36, 37]

Omn — DV*n =0, ©)
where D is the diffusion constant. The connected density correlation function
C,(x —x/, t — t') = Re[(n(x, )n(x', t')) — (n(x))(n(x’))]relates the density at space—time (x, t) to the

densityat (x/, t')vian(x, t) ~ fdt’dx’Cn (x — x', t — t")n(x', ¢') and in a hydrodynamic regime is expected
to be of the form
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Figure 5. Thermalization in closed quantum systems. Conserved quantities restrict the approach of a closed quantum system to global
equilibrium, thus rendering global thermalization a slow process. In the Bose—-Hubbard model the total particle number is conserved
leading to diffusive power-law tails in the connected density correlator C, (x, ) = Re[{Ai, (t)7g) — (fx) (fig)]. (@) Atlow
temperatures (T = ]), where quasiparticles are reasonably well defined, the density correlator does not reach the diffusive regime
within the accessible simulation time but is dominated by ballistic sound peaks. (b) By contrast, for high temperatures (I' = 10]) the
crossover to diffusion becomes apparent. (c) For temperatures T > 4] thelocal density correlator C, (0, t) ~ 1/+/Dt,where D is the
diffusion constant. By contrast, at low temperature T' = ] the diffusive regime has not yet been reached within the numerically
accessible times and the correlations rather decay ballistically C, (0, t) ~ 1/t. The slow relaxation of the hydrodynamic modes leads
to the global thermalization time scale ¢y, ~ L?/D that is parametrically larger than the scrambling time scale ., ~ L/v}, of quantum
information.

Table 1. Diffusion constant D and
the ratio D\ /vZ for different
temperatures T. The errors as
indicated in the parentheses are
errors from the fits.

b D/ @) DX\ /v

4 14.29(27) 7.2(6)
6 11.69(10) 6.0(4)
8 10.42(04) 5.4(3)
10 9.79(01) 5.1(3)
Colx, 1)~ —S e, (6)
47Dt

with C = f dx C,(x, 0). Whereaslocal equilibrium is approached after a few scattering events, attaining global
equilibrium is restricted due to the relaxation of such conserved quantities, which have to be transported over
long distances. At comparatively low temperatures (T = J), figure 5(a), the ballistic spread of sound modes
dominates the dynamics of the connected density correlator in the numerically accessible time regime. However,
athigh temperatures (T' = 10]), (b) the density correlator approaches diffusive transport after a few hopping
scales and attains a finite value in the region between the sound modes. To be more quantitative, we study the
local (x — x’ = 0) density correlation function. At high temperatures T 2> 4] thelocal correlator exhibits a
diffusive power-law decay C, (x = 0, t) ~ 1/+/Dt, (c). For this parameter set we extract the diffusion constant
D = 9.79(1)a¥ for T = 10J and D = 14.29(27)a?] for T = 4], where a is the lattice spacing; see table 1. The
decrease of the diffusion constant with increasing temperature is somewhat counterintuitive. We attribute this
behavior to the fact that the calculations are performed in the grand-canonical ensemble. Hence the particle
density depends on the temperature and, in particular, increases with temperature in the chosen parameter
regime. We note that the connected density correlator does not exhibit pronounced hydrodynamic long time
tails, which could result from higher order gradient corrections to the diffusion equation and mask the 1,/v/Dt
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decay. This seems to be a particular property of the density correlator, as we find at high-temperatures
pronounced ¢t —3/4 corrections in the energy-density correlation function (not shown), in agreement with [37].
It has been proposed that the diffusion constant is related to the butterfly velocity vy, and the Lyapunov
exponent \; via D ~ v /) [38—41], where 1/ )\ is a bound for the local thermalization time in which the
system is able to attain local equilibrium characterized by alocal temperature and local chemical potential that
varies between different regions in space. From our simulations, we obtain coefficients of the order
DX /vE ~ 5.5 for temperatures T > 6]; see table 1, which seems to suggest a connection between the spread of
information and local thermalization, as suggested by calculations for holographic matter. However, clearly
global thermalization is a parametrically slower process than information scrambling and takes for systems of
size L times of the order ty, ~ L?/D. Experimentally measuring OTO correlators (section 1.3) and density
correlators (section 3.3.3) will make it possible to further check these holographic predictions.

1.3. Measuring dynamical time-ordered and OTO correlators

We develop two generic interferometric protocols that measure time-ordered as well as OTO correlation
functions for systems of bosons or fermions in an optical lattice. The first is based on globally interfering two
many-body states and the second on local interference. The quantum interference of two copies of the many-
body state is realized by local beam splitter operations. Variants of this approach have been proposed to study
Rényi entropies [42—44] and have been demonstrated experimentally using a quantum gas microscope [19, 20].
Both protocols that we propose consist only of elements which have already been used in experiments. The two
protocols are complementary and each of them has its own advantages. In the following, we sketch the main
features of the protocols and refer to the methods section 3.3 for technical details on the implementation.

Global interferometry precisely yields the square modulus of the single-particle Green’s functions
g:?’jl(t) = |G;i(1)|* and the OTO correlators }";?’jl(t) = | F;j(t)|* for pureinitial states (see section 3.3.1). Ina
thermalizing system, effective finite temperatures can be obtained with the help of quenches from pure initial
states. However, generic high temperature initial states are not accessible with this protocol. The measurement
schemes proposed e.g. in [23] face similar challenges. The global interferometry protocol is furthermore limited
to rather small system sizes, since the many-body wave function overlap has to be measured, which requires an
extensive number of beam splitter operations.

These limitations are overcome by the second proposed protocol which uses local interferometry (see
section 3.3.2 for details on the implementation). In this protocol, only two local beam-splitter operations are
required irrespective of the system size, and only local density differences between the two copies have to be
measured. Furthermore, initial thermal density matrices can be studied as well. This local approach yields a
slightly amended two-point correlation function g}]‘»’c(t) ~ Im[(a ]T (t)a;) (a;(t)a;") Jand OTO correlator
}'};’C(t) ~ Im[(ajT (t)a} aj(t)a;) (ajT (t)a;a; (t)a;') ]. However, we demonstrate in section 3.3.2 that these
correlators carry much of the same information as the ones we discussed previously. Static correlation functions
are accessible with the same techniques and an extension to higher order correlators is straightforward.

2. Discussion and outlook

We studied time-ordered as well as OTO correlation functions in the one-dimensional Bose-Hubbard model
and suggest different protocols to experimentally access them. At high temperatures, well-defined quasi-
particles cease to exist and the time-ordered Green’s function decays within short times. However, the spread of
information is not necessarily linked to the transport of quasi-particles. Our numerical results for the OTO
correlators clearly indicate the ballistic spread of information even at high temperatures where transport is
incoherent. In our one-dimensional system, this linear spread sets the timescale for scrambling information
across the quantum state to be proportional to the system size. Moreover, the existence of conserved quantities
in the Bose~Hubbard model leads to diffusive behavior of the corresponding time-ordered correlation
functions. Global thermalization therefore scales with the square of the system size and takes parametrically
longer than scrambling quantum information.

For future work, it would be on the one hand interesting to develop analytical predictions for the growth of
OTO correlators, which in our numerics deviates significantly from the simple exponential growth obtained in
strongly coupled field theories, or for the bounds that characterize the information propagation and Lyapunov
exponents. On the other hand, the numerical study of OTO correlators in other interacting many-body systems,
including Fermi—Hubbard models, spin models, or continuum Lieb—Liniger models, could be beneficial. Taking
such routes could help to advance our fundamental understanding of information scrambling, transport, and
thermalization.

Experimental measurements of both time-ordered and OTO correlators will be eminent for the
investigation of the dynamical properties of many-body systems. We proposed two different protocols to
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measure correlation functions, which can be either static, time ordered, or OTO. The schemes are respectively
based on the global and local interference of two copies of the many-body state of interest. The required
techniques have already been demonstrated in experiments with synthetic quantum matter. An extension of the
described experimental schemes to two-dimensional systems is conceivable as well and could provide a valuable
perspective on the dynamics of many-body quantum systems.

3. Methods

In this section, we discuss the numerical method with which the calculations have been performed, the
procedure to obtain the velocities v, v, and the Lyapunov exponent )\ , as well as technical details on the
implementation of the proposed protocols.

3.1. Numerical simulations
Our numerical simulations are based on finite-temperature, time-dependent MPO [45-50].
For the density correlations, we evaluate [49]

(g (0)7;0) )5 %f %tr[e’gﬁ(eitﬁﬁfe’“ﬁ)ﬁj] - %tr[(e%ﬁe*ﬁﬁ/zfafefiéﬁ)(ef%ﬁﬁje*ﬁﬁ/zeiéﬁ)], @

where (s the inverse temperature and Z the partition function. We construct the MPO approximation of the
two terms in the parentheses by first computing e~#1/24, and i e PA/2, respectively, and then performing a

real-time evolution up to % and — % By exploiting the time translation invariance,

(fig (1)7j(0))5 = (g (t/2)7j(—t/2))s, the maximum simulated time has effectively been reduced by a factor
two, which in turn reduces the required virtual bond dimension of the MPO.

To evaluate e~#/2, we employ a second-order Suzuki-Trotter decomposition with imaginary time step A7
(typically A7J = 0.025) after splitting the Hamiltonian into even and odd bonds, as described in [45]. The real-
time evolution proceeds by Liouville steps A (t + At) = eiDHA (1)1 For each of the steps we combine a
fourth-order partitioned Runge—Kutta method [51] with even—odd bond splitting of the Hamiltonian. As noted
in [49], the Liouville time evolution has the advantage that the virtual bond dimension does not increase outside
the space—time cone set by Lieb—Robinson-type bounds. The high order decomposition also allows for relatively
large time steps (in our case A#J = 0.125 or 0.25).

For the OTO correlators (cjT (t) c;f ¢j(t)cz)p, aregrouping analogous to equation (7) would lead to four terms
inside the trace, such that a straightforward contraction to evaluate the trace becomes computationally very
expensive. Instead, we evaluate

] T 1 itH ,—GH .} o—itH itH . o—itH
(c}(t)cfcj(t)cf)g = tr[(ele J”c;e Hely(e Heje He,)] (8)

and time-evolve both e=#4 c]T and cjup to time t. Subsequent application of the site-local operators ¢} and ¢, does
not affect the virtual bond dimension in the MPO representation.

In our simulations, we restrict the local Hilbert space to three states mainly due to computational
limitations. Since the average particle number per site is approximately one, this restriction should not
qualitatively affect the simulation results. Moreover, truncating the local Hilbert space to three states is sufficient
to render the system non-integrable, which is crucial to observe the thermalization behavior studied in
this work.

Since OTO correlators are closely linked to the spreading of entanglement, it is challenging to simulate them
using MPO techniques. In figure 6 we compare the data obtained for the same simulation parameters but
different maximal bond dimensions. The MPO bond dimension of 20 apparently leads to a spread of quantum
information from distances |1 — j| &~ 6to|i — j| ~ 10 withina duration 6t ~ 0, which manifestsitselfina
plateau in the light-cone, see figure 6(a). Increasing the bond dimension shifts this numerical artifact to larger
distances. It is however exponentially costly to reach full convergence of the OTO correlator. In the analysis of
the numerical data we therefore only considered small distances, where we checked that increasing the bond
dimension does not alter the correlators.

3.2. Data analysis

We describe in detail how we determine the light-cone velocity v, the butterfly velocity vy, and the Lyapunov
exponent. The light-cone velocity is defined as the ratio of the distance |i — j| and the time at which the reduced
OTO correlator F7;(t) reaches a small threshold. The butterfly velocity, however, sets a scale for the time it takes
to scramble information over the system and is therefore defined via the time at which F7;(¢) attains alarge value
of order one. The specific threshold one chooses to determine the butterfly velocity is thus somewhat arbitrary.
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-15 -10 -5 0 5 10 15
distance (i-j) distance (i-j)

Figure 6. Comparison of numerical data for different bond dimensions. OTO correlators F;(t) are shown for T = 4] and U = J,and

bond dimension (a) 20 and (b) 400. The plateau emerging around |i — j| & 5 in (a) diminishes and appears only at larger distances for
the higher bond dimension shown in (b). However, despite the large difference in the bond dimension, deviations from the linear light
cone are still apparent.
4 T T T T T
3 B T=10
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Figure 7. Determining the light-cone v, and butterfly velocity vp. The velocities resulting from alinear fit to the times at which F7;(t)
reaches the value F* are shown for U = Jand T = {4, 10}]. The errorbars are the fitting errors. Inset: the inverse slope of the linear
fit to the times as a function of distance |i — j| determines the different velocities (shown for U = Jand T = 4]).

We illustrate the dependence of the velocity v on the chosen threshold F* of the reduced OTO correlator F fj(t)
in figure 7. For large values of F*, the velocity converges toward a constant. Hence, the butterfly velocity will be
largely insensitive to the precise choice of F* aslong as it is large enough. For the definition of vy, we consider
the specific value of F{ = 0.2.

In thelimit 7* — 0, there is a strong dependence of v on the choice of the threshold. The light-cone
velocity v|. is defined by the fastest spread of information through the system and is determined by the reduced
OTO correlator attaining a small value. To fulfill this definition, we fix - = 0.0005; see inset in figure 7.

As described in section 1.1, from the SYK model and strongly coupled field theories one could expect that the
OTO correlator grows exponentially on a timescale set approximately by the butterfly velocity. We thus fit the
exponential function

Fit) =a-ehl=#) )

to the numerical data simultaneously for distances 1 < |i — j| < 5withintherange —2.5 < log F fj(t) < -1
The butterfly velocity v}, is determined as described above with the threshold F* = 0.2, which lies well within
the interval of the considered data points; see figure 8(a) for an exemplary plot. We note, however, that our data
does not support an exponential growth of the OTO correlator over parametrically large times, since the
collision time 7 is similar to the scrambiling time ., in our system. This is demonstrated by extracting the
growth rate Ay from linearizing the OTO correlator around the light-cone velocity within the range

—14 < log Fji(t) < —4.5, figure 8(b), which yields larger rates. In particular, for the parameters shown in
figure 8, we obtain Ay = 2.9(1) and A, = 10.3(5), respectively.
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Figure 8. Determining the Lyapunov exponent \. OTO correlators F7;(¢) are shown for T = 10] and U = J. Solid lines depict the
predicted exponential growth from which we determine (a) the Lyapunov exponent A\;, = 2.9(1) and (b) the light-cone exponent

Ajc = 10.3(5). The dashed gray line denotes the threshold value F* used to determine the velocities v}, and vic, respectively. We
obtain the exponents by fitting our data in a restricted regime around the threshold value F* to the predicted exponential growth, see
text for details. However, we note that in our data the exponential growth is limited to a rather small time range. The errorbars shown
in figure 4 correspond to errors obtained from such fits.

(a) Two-point correlation functions gi.l(t) = <c; (t)ei)|?

(1) hole in left copy : (2) time evolution : (3) hole in right copy (4) beam splitter (BS)
| s s | s . and parity measurement
cil) ) vemHoly) ey | em i) e y)
| |
{ o [ { | { 0
. |
site 7 [ ) i [ ) : [ ) -0
e o o ° ~—0
{ o ! () ! { 0
I . q
. . | . | site j: -~
l
° o | e ' e ° o~—>0
. time t -
O(i, 7) = a®1 U(t) 1®c; -- BS
(b) out-of-time ordered (OTO) correlation functions ]—‘%l (t) = \(c; (t)cle;(t)es)|?
(1) two-point sequence (2) flip sign of (3) two-point squence (4) beam splitter (BS)
Hamiltonian and parity measurement
As. . ol ol A ..
0(i, ) H— —H 03, 1) - BS

Figure 9. Probing dynamical correlation functions through the global interference of two many-body states. Schematic illustration of
the experimental protocol to determine the (a) time-ordered Green’s function Q,%l(t) = (wlc}‘ (t)cil) | as well as (b) OTO
correlation functions F' #(t) = <1/J|Cj (t) c;f ¢j(H)cilih) 2. Details of the protocol are described in the text.

3.3. Details on the experimental protocols
We elaborate on the different protocols outlined in section 1.3, which can be used to experimentally access the

theoretical findings presented in this work.

3.3.1. Global many-body interferometry

We consider a system of bosons or fermions in an optical lattice. At this point, we do not make any assumptions
about the specific form of the Hamiltonian H. We first focus on the real-time and spatially resolved single-
particle Green’s functions G igjl(t), which can be measured by the following protocol, figure 9(a): (1) initially,
prepare two identical copies of a pure state 1)) ® |[1)). Remove a particle on site i in the left system by locally
transferring the atom to a hyperfine state that is decoupled from the rest of the system or by transferring it toa
higher band of the optical lattice, yielding ¢;|¢)) ® [¢). (2) The system evolves in time for a period

t, exp[—iHt]ci|v) @ exp[—iHt]|t). (3) Create ahole on site j of the right system

10
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[01() @ [ (D) = e gy @ cjeiftjap). (10)

We abbreviate the sequence of the operations (1)—(3) as oG, 7) and illustrate the corresponding quantum circuit
in the bottom of the blue box in figure 9(a). (4) Finally, measure the swap operator V, which interchanges the
particles between the left and the right subsystem

(V) = erllve ) (1] @ [1(0) (e O = [ @ @) P = [(c] (i) P = GE(®). (11)

The expectation value of the swap operator is experimentally determined by a global 50%-50% beam splitter
operation, which is realized by tunnel-coupling the left and the right system, followed by a measurement of the
parity-projected particle number [19, 42, 43].

OTO correlation functions are measured in a similar fashion, figure 9(b). To begin with, we recycle the first
three steps of the Green’s function protocol, compiled in O (i, j). As a second step, the sign of the Hamiltonian
needs to be inverted globally. The sign of the interaction can be flipped by ramping the magnetic field across a
Feshbach resonance, as demonstrated experimentally, for instance, in the realization of negative temperature
states [52]. Furthermore, by appropriately tuning the drive frequency of a modulated optical lattice, the sign of
the hopping matrix element can be flipped [53]. Combining these already established experimental techniques,
the global sign of the Hamiltonian is inverted. As a next step, the operations O ( j, i) are applied again, leading to
the time evolved state

[01(0) @ [ (D) = eiftcjeHicy) © cielfije He|y). (12)

The square modulus of the OTO correlators is then obtained by measuring the wavefunction overlap of the left
and the right system using beam splitters as discussed before.

For the measurement of both the Green’s function and the OTO correlators, the initial state |1)) can be an
arbitrary pure state, such as the ground state, or a simple product state. An effective finite temperature state can
be obtained for quenches from initial pure states to some final Hamiltonian. In a thermalizing system [30-32],
the effective temperature is then determined by the energy-density produced by the quantum quench. In the
case of a thermal initial state, after the first three steps of our protocol, blue box in figure 9, the system is prepared
inthe state p;(t) ® p, (t), where p, (¢) is a generic density matrix. The measurement of the swap operator P
yields [43]

Vy=tVp,(t) @ p, (1) = V> py, (D p,, D) (ul @ [v) (U] = tr Y p, , ()., (D) (ul @ ) (]

v 124
= 1, (1) py, (1) = trpy () p, (B). (13)
m
For purestates, p; (t) = [, (1)) (11, (1) ], we directly obtain equation (11). However, at finite temperature, the

measurement does not directly yield the square of the correlation function. In particular, we obtain for the
Green’s function protocol

V) =32 pup (e ¢ (O1v) (We] (W) eilp). (14)

v

By contrast, the desired modulus square of the thermal Green’s function would be

[ei e} P = Y _p,p, (ulef i () 1) (e (B)cilw). (15)
pv

Hence, at high temperatures, equation (14) is suppressed by a factor 1/Z, where Z is the partition sum, and thus
vanishes in the thermodynamic limit. A similar reasoning applies in the case of OTO correlators.

3.3.2. Local many-body interferometry
Interfering two system copies globally requires beam splitter operations with high fidelity, as in each
measurement for systems of size L the same number of beam splitter operations have to be applied. To overcome
this challenge, we introduce an alternative protocol that is scalable since it only requires two beam splitter
operations irrespective of the system size.

Alocal beam splitter operation on site /is realized by coupling the left and the right copy of the quantum
system by a tunneling Hamiltonian

A = —Jus(a by + by a), (16)

where alT (blT) creates a particle in the left (right) system. The unitary evolution under equation (16),

BS|(7) = exp [—iI—AllBS 7], for time 735 = 7 /4Jps defines a 50%-50% beam splitter operation

11
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(a) Two-point correlation functions G\°(t) ~ Im[{al(t)a;)(a;(t)a})]

(1) beam splitter : (2) time evolution : (3) beam splitter (4) measurement of
for short period | | with field gradient density difference
| |
| |
{ [ ] [ ( | { (
o |
sitei: @ <— @ i [ ) : [ ) ()
® o o ® °
{ o ! { [ o o
| .
() () | [ ) \sitej: @) <—> ®
|
{ o | o : [ o
) time t ~
7] m—

(b) out-of-time ordered (OTO) correlation functions — Flo°(t) ~ Inl[(a;(t)a}\aj(t)aiﬂ(z;(t)aiaj(t)aT>]

Vi

(1) beam splitter (2) evolution (3) flip signof H+  (4) evolution (5) beam splitter (6) measurement of
rem. particles at site j density difference
| 7 H— -H 7] — N =
| BSi | ] U(t) | aj ®aj & BSi 67'Li

Figure 10. Probing dynamical correlation functions through the local interference of two many-body states. Using local beam-splitter

operations only, our protocol measures (a) time ordered correlator Qg-’c(t) ~ Im[(a]T (t)a;)(a; (t)ai'r) Jaswellas (b) the OTO
correlator .7:5“ (t) ~ Im [(aj+ (t) u; aj(t)a;) (aj+ (t)aia;(t) af) ]. A detailed description of the protocol is given in the text.

(- 5000

=BS;

Furthermore, the phase of the beam splitter can be adjusted by applying a field gradient between the left and the
right system 1':[1F = g(blT by — a; a)) for a duration 75, R(1f) = exp [—iI—AIIF r]:

o 1 1 —ie
BS; = R'(¢)BS| R(¢) = — y ; 18
| = RN ()BS| R() ﬁ(_iem 1 ) (1s)
where ¢ = hry.

The time ordered Green’s function for a system prepared in an arbitrary density matrix can be measured by
the following sequence (figure 10): (1) apply abeam splitter operation on site i for a short duration 7Jgs < 1.In
that limit, the unitary evolution can be linearized BS;(7) = 1 — iI:IIBST + O (Jis72). (2) Let the two copies
evolve for the physical time ¢. (3) Apply a 50%-50% beam splitter operation on site j with a phase that is detuned
from the firstone by ¢ = 7/2. (4) Finally, the density difference 67; between the right and the left subsystem is
measured. This leads to the following measurement outcome

Gi(t) = (BS] (r)eBS 67 BS;e H1BS (7). (19)
We first calculate the densities after the beam splitter operation BS;, which gives
B 1
Al = a; a; = E(a} — b))(aj — b)), (20a)
B s R R
fly; = bj bj = E(a]- + bj)(clj + b]) (20b)

Computing the density difference between the right and the left system, we find
(517]‘ =flj — Ayj = —(b;faj + ajb]) (21)

Considering now that the duration of the first beam splitter operation on site i is short and using the particle
number conservation, we obtain

GEe(t) = 4JpstIm {{a] () a;) (a;(t)a]) } + OUdsT?). (22)

The conventional time ordered one-body correlation function is defined as G;;(t) = <a}f (t)a;). In our protocol,
the imaginary part of the product of a particle and a hole correlation function is measured. However, we argue

below that this observable carries related information as the time-ordered correlation function G;(t); see also
figure 11(b).
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Figure 11. Correlation functions obtained from the local interference of two quantum states. (a) OTO correlation functions F lOC(t)
and (b) time-ordered correlation functions gl“(t) as measured by the protocol based on local beam splitter operations (section 3.3.2)

contain similar information as the originally 1ntr0duced correlators. The data is shown for temperature T = 4], interactions U = ],
chemical potential i = 0, and systems of size L = 30 and can thus be compared to figure 1.

OTO correlators are measured by a straight forward extension; figure 10(b): (1) apply a beam splitter
operation for a short duration 7Jgs < 1atsite i. (2) Let the system evolve for a physical time t. (3) Use single-site
addressing to remove a particle on site j in both copies. (4) Flip the sign of the Hamiltonian H — —H, as
suggested in the previous section. Let the system evolve in time for the duration . (5) Apply the 50%-50% beam
splitter operation BS; on site i. Evaluating these steps, we find

f};’c(t) = (BS;‘(T)eiﬁta;b;e‘imB_Sjéﬁi X B_Sieiﬁtaj bje‘imBSi(T»
= 4JgsTIm {(a] (1)a] aj(t)a;) (a] ()aia;(D)a]) } + OUssT?). (23)

This expression corresponds to the product of two OTO correlation function. Four point correlators in spin
systems can be obtained with related protocols [18].

The OTO correlator F L"C (t) obtained from local interference contains at the considered temperatures
essentially the same information as the one we originally introduced. As the protocol measures the imaginary
part of a product of two OTO correlators, it starts out at zero. The scrambling across the quantum state manifests
itselfin the linear propagation of a wave-packet in F7; loc (1) (see figure 11(a)) from which light-cone and butterfly
velocities can be extracted. In figure 11(a), we once agaln attribute the plateau in the light-cone, which starts at
li — jl 2 7,tothe finite MPO bond dimension of 400. Similarly, Q%J‘.’C(t) starts off at zero but then develops a
peak that quickly decays; figure 11(b). From that we determine the quasiparticle lifetime 7/ ~ 0.32 which
corresponds roughly to half the lifetime obtained for the Green’s function G;(¢). This factor can be attributed to
the fact that here the product of two correlation functions is measured.

With the protocols discussed so far, static one-body correlation functions can be measured by setting the
physical time t = 0. Moreover, a generalization of the local protocol makes it possible to measure static
correlations functions of arbitrary order. Specifically, correlators of 67i; determine one-body correlation
functions of the original many-body state:

<5ﬁ,’5ﬁj> =2 (af Clj> <aia}>. (24)
Here we used that the left and the right initial states are identical. Higher order static correlation functions in the

creation a;' and annihilation operators a; are straightforwardly obtained by measuring higher order correlators
in 671;. We emphasize that this protocol scales favorable with system size, and that correlators between arbitrary
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sites and of arbitrary order can be taken in a single shot by performing the beam splitter operations on the full
system.
The density matrix describing the quantum state of a system can be expressed as
p=N > 1 iy ® .. b (25)
iy iy
where N isanormalization constant and the G;, constitute a suitable basis [54]. In the case of fermions or hard-
core bosons, one possible choice for the basis are the Pauli matrices. The knowledge of correlators up to sufficient

order makes it possible to determine the so-called Stokes parameters r;, . ;, and thereby to reconstruct the
density matrix, which paves the way for the full state tomography of quantum states with massive particles.

3.3.3. Measuring dynamical density correlators
In this section we discuss two different possibilities to measure dynamical density correlation functions and
thereby observe their diffusive behavior.

The dynamic structure factor S (k, w), which is the spatial and temporal Fourier transform of the density
correlator C, (x, t), can be measured with Bragg spectroscopy [55, 56]. In Bragg spectroscopy, the detuning of
the two laser beams sets the frequency wand the angle between the beams the transferred momentum k. A
measurement of the absorption of the system as a function of k and w directly maps out the dynamic structure
factor S (k, w). Diffusion manifests itself in the wavevector and frequency resolved structure factor S (k, w) as
Lorentzian peaks with half-width-half-maximum that scales as Dg".

Itis furthermore possible to measure the dissipative response ([1; (¢), #;]) to alocal perturbation of the
system in a quantum gas microscope. To this end, alocal potential 6H = n;0p is created at site j by applying a
laser for a short time T, yielding the time evolution exp[—i6HT] ~ 1 — i6HT + O (6u*72). Measuring the
density at site i after the unitary time evolution for duration t we obtain

XPE(@0) = (ni() + i6pr ([ni (D), nl) + O@Gu*r?). (26)

In equilibrium, the fluctuation-dissipation theorem provides an exact relation between ([n; (), n;]) and
(n;(t)n;). The accurate measurement of the former therefore enables the observation of diffusive response in the
dynamical density correlator.
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