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We address low-density two-dimensional circular quantum dots with spin-restricted Kohn-Sham density
functional theory. By using an exchange-correlation functional that encodes the effects of the strongly correlated
regime (and that becomes exact in the limit of infinite correlation), we are able to reproduce characteristic
phenomena such as the formation of ring structures in the electronic total density, preserving the fundamental
circular symmetry of the system. The observation of this and other well-known effects in Wigner-localized
quantum dots such as the flattening of the addition energy spectra has until now only been within the scope of
other, numerically more demanding theoretical approaches.

DOI: 10.1103/PhysRevB.89.125106 PACS number(s): 73.21.La, 71.15.Mb, 73.23.Hk

I. INTRODUCTION

The effects of strong electronic correlation in low-
dimensional semiconductor nanostructures have attracted
large research interest for decades, both from purely fun-
damental and from applied points of view [1–5]. The high
degree of tunability of, e.g., quantum wires or quantum
dots, nowadays easily realized in laboratories [4,5], renders
them a fertile playground to investigate strong-correlation
phenomena. For example, it is well known that, for sufficiently
low densities, such finite systems may display charge localiza-
tion [6–12], reminiscent of the Wigner crystallization of the
bulk electron gas [13] and a consequence of the dominance of
the Coulomb repulsion over the electronic kinetic energy. From
the practical side, potential applications of Wigner-localized
systems include the design and manipulation of qubits and
quantum computing devices [3,14–16], or the realization of
infrared sensors to control the electron filling in semiconductor
nanostructures [17].

Along with the fundamental and practical interest, strongly
correlated systems are well known to pose serious challenges
for the different theoretical approaches commonly used to
study them. On the one hand, the configuration interaction
(CI) method becomes numerically unaffordable if one wants
to treat more than five or six electrons [12,18,19]. By using
coupled-cluster methods, which allow for a larger basis set, it
has very recently been shown that the number of particles can
be raised up to 12 in two-dimensional quantum dots [20]. Other
wave-function approaches, such as quantum Monte Carlo
(QMC) methods [1,2,12] or density matrix renormalization
group (DMRG) [21], can treat larger systems (still less than
∼102 particles) but face limitations as well if the correlations
become too strong [12]. On the other hand, spin-unrestricted
Hartree-Fock (HF) [3,8] or density functional [22] approaches,
much less computationally demanding, mimic the effects of
strong correlation by breaking the spin and other symmetries
of the system. This makes them much less reliable than
wave-function methods, sometimes with unphysical results
and controversial interpretations [21–24].

Kohn-Sham (KS) density functional theory (DFT), in its
original restricted formulation [25,26], has been known for a

long time to deliver very poor results when applied to strongly
correlated systems. The reason for this is not fundamental,
as KS DFT is, in principle, an exact theory. The problem is
that the available approximations for the exchange-correlation
functional fail in the strongly correlated regime [12,23,27,28],
sometimes making it extremely difficult to even get converged
results at all [29]. For example, the local-density approxima-
tion (LDA) wrongly predicts largely delocalized electronic
densities in strongly correlated quantum wires [28], being
unable to reproduce the expected N -electron-peak structure
due to charge localization [28].

Recently, a novel way of constructing exchange-correlation
functionals for KS DFT has been proposed [30,31], based on
the exact strong-coupling limit of DFT, which was formulated
a few years ago within the so-called strictly correlated electrons
(SCE) formalism [32–34]. The first applications on quasi-one-
dimensional quantum wires [30,31] have shown that the result-
ing exchange-correlation functional is able to qualitatively de-
scribe arbitrary correlation regimes without artificially break-
ing any symmetry. This is achieved since the SCE functional
is able to create barriers (or “bumps”) in the corresponding
Kohn-Sham potential, which are a known feature of the exact
one [35,36]. Precisely these barriers can localize the charge
density, avoiding the need of symmetry breaking to describe
systems in which charge localization effects are important.

In this paper, we extend this approach to the study of two-
dimensional circularly symmetric quantum dots with parabolic
confinement. By considering different confinement strengths,
we investigate the crossover between the weakly interacting
and the strongly correlated regimes. In particular, we reproduce
well-known features of low-density quantum dots such as the
formation of sharp rings in the electronic density [1,12] or
the flattening of the addition energy spectra [8]. Due to the
relatively low computational cost of our approach, we thus
provide here an alternative powerful tool to study these kinds
of systems.

II. QUANTUM DOT MODEL

We consider two-dimensional (2D) quantum dots with
N electrons, laterally confined by a parabolic potential and
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described by the Hamiltonian (see, e.g., Ref. [18])

Ĥ =
N∑

i=1

(
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)
+ e2

ε
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1

|ri − rj | ,

(1)

where m∗ is the effective mass and ε is the dielectric constant.
We use effective Hartree (H∗) units (� = 1, a∗

B = ε
m∗ aB = 1,

e = 1, m∗ = 1) throughout the rest of the paper.
The correlation regime is determined by the confinement

strength: small (large) values of ω correspond to low (high)
densities, for which the Coulomb repulsion dominates over (is
dominated by) the kinetic energy. In order to characterize the
correlation quantitatively, one defines the so-called electron-
gas parameter. In two dimensions it is given in terms of the
electronic density as rs = (πn̄)−1/2, where n̄ ≡ ∫

ρ(r)2dr/N
is the average electron density. In the first calculations
presented here, we have considered N = 1, . . . ,10 and ω ∈
[0.001,1], corresponding to values of rs between ∼1 and 68.

In the noninteracting case, the eigenfunctions of the system
are the so-called Fock-Darwin states [37], with associated
energies given by

εn,m = 2ω

(
n + 1

2
+ |m|

2

)
, (2)

where m ∈ Z and n ∈ N0 are, respectively, the angular and
radial quantum numbers.

III. THEORETICAL APPROACH

A. KS DFT with the SCE functional

We use the zeroth-order “KS-SCE DFT” approach, which
was introduced in Ref. [30] and described in more detail
in Ref. [31]. Essentially, the method consists of solving the
standard spin-restricted Kohn-Sham equations [26],(

−∇2

2
+ vKS[ρ](r)

)
φi(r) = εiφi(r), (3)

where vKS[ρ](r) is the Kohn-Sham potential

vKS[ρ](r) = vext[ρ](r) + vHartree[ρ](r) + vxc[ρ](r), (4)

and vxc[ρ](r) is an approximate exchange-correlation potential
that is constructed from the functional derivative of the exact
strong-interaction limit of the Hohenberg-Kohn functional.
The resulting potential is able to capture the features of the
strongly correlated regime without introducing any spin or
spatial symmetry breaking in the system. Below we briefly
describe how the functional and the potential are built, and we
refer the reader to Ref. [31] for further details.

The SCE functional V SCE
ee [ρ] of Seidl and co-

workers [32,38–40] is defined as the minimum possible
electron-electron repulsion in a given smooth density ρ(r):

V SCE
ee [ρ] ≡ min

�→ρ
〈�|V̂ee|�〉, (5)

where V̂ee is the Coulomb repulsion operator, i.e., the last
term in Eq. (1). It can be shown that in the low-density
(or strong-interaction) limit, the Hohenberg-Kohn functional

tends asymptotically to V SCE
ee [ρ] [31]. The SCE functional is

the natural counterpart of the KS kinetic energy Ts[ρ]: the
latter defines a reference system of noninteracting electrons
with the same density of the physical system, while the former
introduces a reference system (again with the same density) in
which the electrons are infinitely (or perfectly) correlated, in
the sense that the position of one of them determines all the
interparticle distances in order to minimize the total Coulomb
repulsion.

Thus, in the SCE system, if one electron (which we can
label as “1” and take as a reference) is at position r1 ≡ r, the
positions of the remaining N − 1 electrons are given by the
so-called co-motion functions, ri ≡ fi[ρ](r) (i = 2, . . . ,N ),
which are nonlocal functionals of the density. They satisfy the
differential equation [32]

ρ(r)dr = ρ(fi(r))dfi(r), (6)

or, equivalently, are such that the probability of finding one
electron at position r is the same as finding the electron i

at fi(r). The co-motion functions also satisfy the following
cyclic group properties, which are a consequence of the
indistinguishability of the electrons, ensuring that there is no
dependence on which electron is chosen as reference [32]:

f1(r) ≡ r,

f2(r) ≡ f(r),

f3(r) = f(f(r)),

f4(r) = f(f(f(r))),

...

f(f(. . . f(f(r))))︸ ︷︷ ︸
N times

= r.

(7)

Notice that the SCE system describes a smooth N -electron
quantum-mechanical density by means of an infinite super-
position of degenerate classical configurations, which fulfills
Eq. (6) for every r. The square modulus of the correspond-
ing wave function (which becomes a distribution in this
limit [41,42]) is given by

|�SCE(r1,r2, . . . ,rN )|2

= 1

N !

∑
℘

∫
dr

ρ(r)

N
δ(r1 − f℘(1)(r))

× δ(r2 − f℘(2)(r)) · · · δ(rN − f℘(N)(r)), (8)

where ℘ denotes a permutation of 1, . . . ,N , such that ρ(r) =
N

∫ |�SCE(r,r2, . . . ,rN )|2 dr2 · · · drN . The SCE system can
thus be visualized as a “floating” Wigner crystal in a met-
ric [43] that describes the smooth density distribution ρ(r).

In terms of the co-motion functions, the SCE functional
V SCE

ee [ρ] of Eq. (5) is given by [32,44]

V SCE
ee [ρ] =

∫
dr

ρ(r)

N

N−1∑
i=1

N∑
j=i+1

1

|fi(r) − fj (r)|

= 1

2

∫
dr ρ(r)

N∑
i=2

1

|r − fi(r)| . (9)
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Another important property of the SCE system is the fol-
lowing: since the position of one electron at a given r
determines the other N − 1 electronic positions, the net
Coulomb repulsion acting on an electron at a certain position
r becomes a function of r itself. This force can be written in
terms of the negative gradient of some one-body local potential
vSCE(r) [31], such that

−∇vSCE[ρ](r) =
N∑

i=2

r − fi[ρ](r)

|r − fi[ρ](r)|3 . (10)

In turn, vSCE[ρ](r) satisfies the important exact relation [31]

vSCE[ρ](r) = δV SCE
ee [ρ]

δρ(r)
, (11)

providing a very powerful shortcut for the construction of the
functional derivative of V SCE

ee [ρ].
The “KS-SCE” DFT approach to zeroth order [31] consists

of approximating the Hohenberg-Kohn functional as

F [ρ] = T [ρ] + Vee[ρ] 
 Ts[ρ] + V SCE
ee [ρ], (12)

where Ts[ρ] is the usual noninteracting Kohn-Sham kinetic
energy. By varying the total energy density functional

E[ρ] 
 Ts[ρ] + V SCE
ee [ρ] +

∫
ρ(r)vext(r)dr (13)

with respect to the KS orbitals, and using Eq. (11), we see that
our approximation for the KS potential is

vKS(r) 
 vext(r) + vSCE(r) (14)

or, equivalently,

vHartree(r) + vxc(r) 
 vSCE(r). (15)

Equation (13) shows that the KS-SCE DFT approach treats
both the kinetic energy and the electron-electron interaction
on the same footing, letting the two terms compete in a
self-consistent way within the Kohn-Sham scheme. It can be
shown that the method becomes asymptotically exact both
in the very weak and very strong correlation limits [30,31].
At intermediate correlation regimes it is expected to be less
accurate, but still qualitatively correct, as has already been
shown when applied to one-dimensional quantum wires [31].

B. Practical implementation for circularly symmetric 2D
quantum dots

The potential vSCE(r) can be obtained by integrating
Eq. (10). This requires the calculation of the co-motion
functions fi(r) for a given density ρ(r) via the solution of
Eq. (6).

For circularly symmetric two-dimensional systems, where
the density depends only on the radial coordinate r , the
problem can be separated into a radial and an angular
part [32,34]. The positions of the electrons, given by the co-
motion functions, can then be expressed in polar coordinates
as fi(r) = fi(r,θ ) ≡ (fi(r),θi(r)), where the radial components
satisfy Eq. (6) rewritten as [32,34]

2πr ρ(r) dr = 2πfi(r) ρ(fi(r)) |f ′
i (r)| dr. (16)

These equations for the fi(r) can be solved by defining the
function

Ne(r) =
∫ r

0
2πr ′ ρ(r ′) dr ′ (17)

and its inverse N−1
e . The radial coordinates of the co-motion

functions are then given by [34]

f2k(r) =
{
N−1

e (2k − Ne(r)), r � a2k,

N−1
e (Ne(r) − 2k), r > a2k,

f2k+1(r) =
{
N−1

e (Ne(r) + 2k), r � aN−2k,

N−1
e (2N − 2k − Ne(r)), r > aN−2k,

(18)

where ak = N−1
e (k), and the integer index k runs from 1 to

(N − 1)/2 for odd N , and from 1 to (N − 2)/2 for even
N . In the latter case, the N th co-motion function is obtained
separately via

fN (r) = N−1
e (N − Ne(r)). (19)

Equations (17)–(19) show explicitly the nonlocal dependence
of the fi(r) on ρ(r). One must then calculate the angular
coordinates θi(r) of the co-motion functions as a function of
r , the distance of one of the electrons from the center. These
are obtained [32,34], for each value of r , by minimizing the
total electron-electron repulsion energy,

Eee(r) =
∑
i>j

(fi(r)2 + fj (r)2 − 2fi(r)fj (r) cos θij )−1/2,

(20)

with respect to the relative angles θij = θj − θi between
electrons i and j at positions (fi(r),θi) and (fj (r),θj ).

In two-dimensional problems, the number of relative
angles to minimize is equal to N − 1. In this first pilot
implementation, whose primary goal is to check whether the
KS SCE method is able to correctly describe the physics of
low-density quantum dots, this angular minimization is done at
each radial grid point, numerically. Thus, in each cycle of the
self-consistent KS problem we perform Ngrid times a (N − 1)-
dimensional minimization, where Ngrid is the number of grid
points for the radial problem. As the angular minimization
has also local minima, we proceed in the following way. For
an initial nondegenerate radial configuration and given initial
starting angles, we use the quasi-Newton Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm to find the closest local
minimum. Then we change the radial position of the “first”
electron in small discrete steps, calculate the radial positions of
the remaining electrons via Eqs. (18) and (19), and repeatedly
optimize the angles using the BFGS algorithm, with starting
angles taken from the previous step. This procedure rests on
the assumption that the optimal angles change continuously
with the radial configuration. Our numerical calculations
suggest that this assumption is reasonable. Of course, the
remaining open question is how to choose the starting angles
for the initial radial configuration. We have experimented with
simulated annealing as global optimization strategy. However,
in these pilot applications we found it more practical to choose
N − 1 pairwise different numbers “by hand” and probe several
permutations of these numbers as starting angles.
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This strategy is by far not optimal, leaving space to several
improvements that will be the object of future work. First of all,
it should be noticed that the set of N radial distances is periodic,
as each circular shell r ∈ [ai,ai+1] [with ai = N−1

e (i), i ∈
N] corresponds to the same physical situation [32], simply
describing a permutation of the set of distances occurring in the
first shell r ∈ [0,a1]. Thus, by keeping track of the minimizing
angles, and by re-adapting the grid in every circular shell, it
is possible to do the angular minimization only Ngrid/N times
rather than Ngrid times in each self-consistent field iteration.
Another important point that needs to be further investigated
is the actual sensitivity of the results to the accuracy of
the angular minimization. The optimal angles are used to
determine the SCE potential by integrating Eq. (10), and we
observe that this potential is not so sensitive to little variations
of the optimal values, although a systematic study needs to be
carried out.

Overall, while in one dimension the SCE functional has
a computational cost similar to LDA, in two dimensions the
SCE is more expensive, because of the angular minimization.
Still, its computational cost is much lower than that of
wave-function methods. Evaluating the total electron-electron
repulsion energy scales like O(N2) since all pairs of electrons
have to be taken into account. The number of grid points can
be made almost N independent if we exploit the periodicity of
the co-motion functions, so that one can always treat only one
radial shell. With the local quasi-Newton scheme described
above, we expect that the number of optimization steps
increases moderately with N , such that the time complexity
of our algorithm scales polynomially in N , with an exponent
depending on how accurate the angular minimization needs
actually to be. The storage requirements are also quite low
compared to other methods like coupled cluster: storing
all polar coordinates for the co-motion functions requires
O(Ngrid × N ) = O(N2), which can be made linear in N if
we exploit the periodicity of the SCE problem. In future work,
we will focus on optimizing the algorithm, studying larger
numbers of particles.

IV. RESULTS

A. One-electron densities

We have solved the self-consistent Kohn-Sham equa-
tions (3) with the SCE potential for different values of the
particle number N and the confinement strength ω.

As mentioned, the main objective of this work is to show
that KS DFT with the SCE functional is able to capture the
features of the strongly correlated regime without breaking
any symmetry. A systematic comparison of the KS-SCE
accuracy with available wave-function results, as well as the
optimization of the algorithm, will be the object of future work,
where higher-order corrections to the SCE functional will also
be developed and tested. Nonetheless, we want to provide
an impression for the kind of quantitative accuracy that can
be expected from our results. We thus compare, in Fig. 1, the
quantum Monte Carlo densities of Refs. [1,2] for three-electron
fully spin polarized quantum dots in the strongly correlated
regime with those obtained with our approach (both fully and
non-spin-polarized). It can be seen that already for ω = 0.005

FIG. 1. (Color online) Comparison between the densities corre-
sponding to N = 3 obtained with the KS-SCE approach, both spin
polarized (solid blue line) and spin unpolarized (dashed blue line) and
with spin polarized quantum Monte Carlo (red line) from Refs. [1,2].

the qualitative agreement is rather good, and that there is a
small difference between the spin polarized and unpolarized
KS-SCE densities. As the correlation increases with smaller
ω = 0.001, this difference becomes almost negligible as one
would expect, and the agreement between our results and QMC
improves. It should be mentioned, however, that in contrast to
the QMC calculations at these densities, the KS-SCE energy
for the unpolarized cases has slightly lower energy than the
spin-polarized solution. We attribute this discrepancy to the
fact that the SCE functional, being intrinsically of classical
nature, is spin independent and therefore unable to yield the
lowest energy by occupying three different KS orbitals with the
same spin. In future works we plan to add magnetic exchange
and superexchange corrections to the SCE functional, which
should allow the method to recognize the fully spin polarized
solution as the ground-state one. Quantitatively, the KS-SCE
total energy has an error, with respect to QMC, of about
6 mH∗ (∼6%) at ω = 0.005 and of about 1 mH∗ (∼4%) at
ω = 0.001. Notice that, while the fixed-node diffusion Monte
Carlo provides an upper bound to the ground-state energy, the
KS-SCE self-consistent energies are always a rigorous lower
bound to the exact ground-state energy [30,31].

We now illustrate and discuss the physical features of our
results for the electronic densities, going from weakly to
strongly correlated quantum dots. Figure 2 shows the self-
consistent KS-SCE densities for quantum dots with N = 10
electrons, considering both a strong (ω = 1) and a weak (ω =
0.001) confinement strength, for the fully spin polarized (one
electron per Kohn-Sham orbital) and the non-spin-polarized
(two electrons per orbital) cases. As mentioned above, when
the confinement is strong the quantum dot is in the high-density
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FIG. 2. (Color online) Electronic density ρ(r) for a quantum dot
with N = 10 electrons, for ω = 1 and ω = 0.001.

regime and well described by the Fermi-liquid shell structure,
with a density distribution qualitatively similar to that obtained
from the noninteracting Fock-Darwin states of Eq. (2). Besides
some slight oscillations due to the nodal structure of the
different orbitals, the resulting densities are rather “thick” or
smoothed out, and, particularly in the spin polarized dot, quite
delocalized within the system. In both cases the values of the
electron-gas parameter rs are 
1.

As the confinement strength becomes weaker, the electron-
electron correlation plays an increasingly prominent role.
The value ω = 0.001 corresponds to extremely low-density
quantum dots, with rs 
 68, significantly larger than the
maximum values achieved in previous works using wave-
function methods (rs 
 55) [2]. From the figure one can see
how the density becomes much sharper in the radial direction,
forming two very thin concentric rings centered at the origin.
Integration of the density reveals the presence of two electrons
in the inner ring and of eight electrons in the outer one,
in agreement with the “8 + 2” picture of the corresponding
classical configuration made up of pointlike charges—see
Table 1 of Ref. [45].

It should be stressed that, as clearly seen from Fig. 2, the
densities obtained with the KS-SCE approach correctly [12]
preserve the fundamental circular symmetry of the Hamil-
tonian of Eq. (1). When the vSCE(r) potential, which is
constructed from the co-motion functions, is imported into
the Kohn-Sham approach, it is able to describe properly the
strongly correlated regime, without introducing any artificial
spatial or spin symmetry breaking. This happens because the
SCE exchange-correlation potential self-consistently builds
“bumps” that separate the charge density, capturing the
physics of charge localization within the noninteracting KS
formalism. These structures were already observed in the
case of one-dimensional quantum wires using the KS-SCE
approach [30,31], with each maximum in the density corre-
sponding to a minimum in the Kohn-Sham potential between
consecutive bumps. In Fig. 3 we show the self-consistent
Kohn-Sham SCE potentials for ten-electron quantum dots with
ω = 0.001 and ω = 1. Indeed, in the first case the potential has
a local maximum at the origin and a second one in the middle
region, giving rise to the density rings of Fig. 2, also reported
again in Fig. 3. In particular, the deep second minimum of the
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FIG. 3. (Color online) Self-consistent Kohn-Sham potentials
(blue solid line) and densities (red dashed line) for the strongly
and weakly correlated unpolarized cases of Fig. 2 (top and bottom,
respectively). The green dashed horizontal lines correspond to the
energies of the highest occupied KS orbitals. Notice the presence of
classically forbidden regions inside the trap in the strongly correlated
case (ω = 0.001).

KS potential is responsible for the sharp ring of the density in
that region. In this way, restricted KS DFT reproduces the
effect of strong correlation by means of a local one-body
potential. Conversely, in the weakly interacting case ω = 1,
the Kohn-Sham potential does not display such structures.
Here, the minimum of the density at the origin is not due
to any maximum in the potential, but simply results from a
Fermionic-shell-structure effect. In the same Fig. 3 we also
show, as horizontal green dashed lines, the highest occupied
KS eigenvalue in both cases. One can clearly see that in the
strongly correlated case (ω = 0.001) the barriers in the KS
potential create classically forbidden regions inside the trap,
giving rise to charge localization.

In order to visualize the internal ordering of the electrons,
in wave-function methods one usually makes use of two-
body quantities such as the pair-density distribution [12],
which is not accessible in density-functional approaches.
Nevertheless, in the KS-SCE approach this internal ordering
can be observed by looking at the co-motion functions of the
SCE system, as we illustrate in Fig. 4 for the unpolarized dot
with N = 7 and ω = 0.001. The figure shows the co-motion
functions fi(r) = (fi(r),θi(r)) corresponding to two different
configurations, with large and small weight ρ(r)/N in the
infinite superposition of Eq. (8), respectively. For this system,
the density consists of a peak in the origin (which integrates
to one electron) and a sharp ring surrounding it (integrating
to six electrons), as illustrated by the superimposed contour
plot (lighter colors: higher values of the density). The large-
weight configuration is represented by solid symbols, and
the low-weight one by empty symbols. In the first case the
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FIG. 4. (Color online) Co-motion functions fi(r) = (fi(r),θi(r))
for two different configurations of the infinite superposition of
Eq. (8), corresponding to the unpolarized dot with N = 7 and
ω = 0.001. Empty (solid) symbols represent the co-motion functions
for a configuration with a small (large) weight. The classical
“1+6” configuration is shown in the top right inset for the sake of
comparison. The density is also shown as contour plot, with lighter
colors indicating higher density regions.

distribution of the co-motion functions closely resembles the
classical point-charge configuration for this system, namely
the “6+1” distribution with one charge in the origin surrounded
by an hexagon made up of the remaining six charges [45].
Notice that in order to yield a smooth density, also unusual
configurations (like the one with empty symbols) need to
have nonzero weight in the SCE N -body density of Eq. (8).
However, such configurations have a very small weight in the
strongly correlated regime.

B. Addition energies

In quantum-dot systems, the so-called addition energies
provide useful information about the electronic structure of
the system and can be probed experimentally [46,47]. They
are defined as the second energy difference,

Eadd,E ≡ �2E(N ) = E(N + 1) − 2E(N ) + E(N − 1),

(21)

where E(N ) is the total energy for the N -electron quantum
dot. For KS DFT calculations, one can also use the alternative
expression

Eadd,HO = εHO(N + 1) − εHO(N ). (22)

It results from the fact that in the exact KS theory—that is,
if the exact exchange-correlation potential were used—the
highest occupied (HO) Kohn-Sham eigenvalue εHO(N ) is equal
to minus the ionization energy of the physical, interacting,
N -electron system [48,49], i.e., εHO(N ) = E(N ) − E(N − 1).
Notice that whereas the calculation of the addition energies
using Eq. (21) requires knowledge about three different
systems, the second alternative formula of Eq. (22) only

0

4

8

12

Δ 2
Ε(

Ν
)/ω

spin-unpolarized

spin-polarized

ω=1
ω=0.005
ω=0.001
classical, ω=0.001
noninteracting

2 4 6 8
N

0

4

8

12

FIG. 5. (Color online) Addition energies as a function of N ,
calculated via Eq. (21) from the second difference in total energies,
for different values of the confinement strength ω. For comparison,
the noninteracting and classical cases are also shown.

involves two of them. When using approximate functionals,
the two expressions will not, in general, give the same results.

Figures 5 and 6 show the KS-SCE addition energies for
quantum dots with up to ten electrons computed via Eqs. (21)
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FIG. 6. (Color online) Same as Fig. 5, but calculating the addition
energies via Eq. (22) from the difference between the Kohn-Sham
eigenvalues for the highest occupied orbitals.
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and (22), respectively, for different strengths of the confining
potential. From both figures one can see that for strong
confinement (ω = 1) the addition energies are qualitatively
similar to the noninteracting ones. In particular, for the
non-spin-polarized systems they show the well-known peaks at
N = 2 and 6, corresponding to the closure of the first (m = 0)
and second (m = ±1) shells, and also the smaller peak at
N = 4 due to Hund’s rule. In the spin polarized case, instead,
the peaks are found at N = 1 (first shell, m = 0), at N = 3
(second shell, m = ±1) and at N = 5 (third shell, m = ±2).
When the quantum dots become strongly correlated, the shell
structure changes radically. The first main well-known feature
is a flattening of the addition spectrum (notice that in the figure
the energies are divided by ω, which in the low-density cases
takes values as low as 0.005 and 0.001). Second, the peak
sequence becomes more irregular and resembles qualitatively
the equivalent classical point-charge system [2].

V. CONCLUSIONS AND PERSPECTIVES

We have demonstrated the feasibility of constructing an
exchange-correlation potential for spin-restricted Kohn-Sham
density functional theory which is able to describe strong
correlation effects in two-dimensional model quantum dots.
This functional is derived from the exact properties of the
strong-coupling limit of the Hohenberg-Kohn functional. It
allows us to treat low-density quantum dots at relatively
low computational cost when compared to other commonly
employed approaches for studying these systems. Notice that,
already for the number of particles and at the low densities
considered here, CI calculations are not feasible. In the case of
QMC, one has needed, so far, to make use of orbitals localized
on different sites, thus breaking the circular symmetry of the
system [2]. Our approach is numerically much less expensive,

providing access to a broader parameter range than before. It
also yields a set of radically new KS orbitals, which could
be used in QMC instead of the localized Gaussian ones. In
other words, it would be very interesting to see if the KS-SCE
orbitals provide good nodes for fixed-node diffusion Monte
Carlo at low densities, avoiding the need of breaking the
circular symmetry [50].

Overall, this methodology shows the promise of becoming
a powerful tool in low-dimensional, low-density, electronic
structure calculations. To exploit its full potential, several
issues still need to be addressed in future works. First of
all, corrections need to be designed to take the effects of the
spin state in the SCE functional into account, for example
using approximate magnetic exchange and superexchange
functionals. Second, an efficient algorithm to solve (exactly
or in a reasonably approximate way) the SCE equations for
general (noncircularly symmetric) geometry needs to be fully
developed. A viable route for this seems to be the dual
Kantorovich formulation of the SCE functional [41], whose
first pilot implementation [51] has given promising results.
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