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Numerical test of hydrodynamic fluctuation theory in the Fermi-Pasta-Ulam chain
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Recent work has developed a nonlinear hydrodynamic fluctuation theory for a chain of coupled anharmonic
oscillators governing the conserved fields, namely, stretch, momentum, and energy. The linear theory yields
two propagating sound modes and one diffusing heat mode, all three with diffusive broadening. In contrast, the
nonlinear theory predicts that, at long times, the sound mode correlations satisfy Kardar-Parisi-Zhang scaling,
while the heat mode correlations have Lévy-walk scaling. In the present contribution we report on molecular
dynamics simulations of Fermi-Pasta-Ulam chains to compute various spatiotemporal correlation functions and
compare them with the predictions of the theory. We obtain very good agreement in many cases, but also some
deviations.
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I. INTRODUCTION

It is now the general consensus that heat conduction
in one-dimensional (1D) momentum-conserving systems is
anomalous [1,2]. There are various approaches which lead to
this conclusion. The first approach is through direct nonequi-
librium molecular dynamics simulations [3–7]. Consider a
system of N particles connected at the ends to heat baths
with a small temperature difference �T , so that a steady state
heat current J flows across the system. Defining the thermal
conductivity as κ = JN/�T one typically finds

κ ∼ Nα (1)

with 0 < α < 1, which means that Fourier’s law is not
valid. A second approach is to use the Green-Kubo for-
mula relating thermal conductivity to the integral over
the equilibrium heat current autocorrelation function. Sim-
ulations and several theoretical approaches [8–14] find
that the correlation function has a slow power law de-
cay ∼1/t1−α and this again results in a divergent con-
ductivity. Finally, a number of contributions [15–22]
have studied the decay of equilibrium energy fluctuations or
of heat pulses and find that they are superdiffusive. This can
be understood through phenomenological models in which the
energy carriers perform Lévy walks [18–21].

*suman@rri.res.in
†abhishek.dhar@icts.res.in
‡saitoh@rk.phys.keio.ac.jp
§mendl@ma.tum.de
‖spohn@ma.tum.de

In spite of the consensus that heat transport in one-
dimensional momentum-conserving systems is anomalous,
there have been a few results from simulations over the past
few years which have presented a somewhat contradicting
viewpoint. Both nonequilibrium simulations, and those based
on the Green-Kubo formula have claimed normal diffusive
transport in a variety of momentum-conserving systems
[23–26]. Some subsequent studies have attributed this to
finite-size effects [27–29]. However, the issue is not com-
pletely settled, and there is a need for a clearer theoretical
understanding of these results.

A significant step towards understanding anomalous heat
transport in one dimension was achieved recently in [14] and
extended to anharmonic chains in [30,31], where a detailed
theory of hydrodynamic fluctuations is developed including
several analytic results. The main strength of this theory
lies in its very detailed predictions which can be verified
through direct simulations of microscopic models. Unlike
earlier studies which have mainly focused on the thermal
conductivity exponent α, nonlinear fluctuating hydrodynamics
predicts the scaling forms of various correlation functions,
including prescriptions to compute the nonuniversal param-
eters for a given microscopic model. The hydrodynamic
theory is based on several assumptions and hence there
is a need to check the theory through a comparison with
results from molecular dynamics simulations. This is the
aim of our contribution. In a recent paper [32] results are
discussed for hard-point particle systems either interacting via
the so-called shoulder potential or with alternating masses.
Here we consider Fermi-Pasta-Ulam (FPU) chains, report on
simulation results for equilibrium time correlations in different
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parameter regimes, and compare with the theory. The main
finding is that many of the predictions of the theory are
verified quite accurately, though there are some discrepancies.
Some of our simulations were done in parameter regimes (low
temperatures, asymmetric potentials) where normal diffusive
transport had been reported in some earlier work. Our results
on equilibrium correlations do not see this, i.e., we continue to
see anomalous scaling. Thus the present work reinforces the
belief in anomalous one-dimensional heat conduction.

There is a large body of work which addresses the
equilibration problem in FPU chains [33–35]. As in our study
they start from random initial data; however, nonequilibrium
initial conditions at low energies are considered. In contrast, we
investigate the correlation functions for an FPU chain already
in equilibrium at moderate temperatures. The initial conditions
are chosen from the appropriate thermal distribution, and
thus any possible artifacts arising from nonequilibration or
from long equilibration times are avoided. The correlation
functions are obtained by performing an average over these
initial conditions.

II. PREDICTIONS OF FLUCTUATING HYDRODYNAMICS
FOR ANHARMONIC CHAINS

Let us first summarize the theoretical results [31]. Consider
N particles with positions and momenta described by the
variables {q(x),p(x)}, for x = 1, . . . ,N , and moving on a
periodic ring of size L such that q(N + 1) = q(1) + L and
p(N + 1) = p(1). Defining the “stretch” variables r(x) =
q(x + 1) − q(x), the anharmonic chain is described by the
following Hamiltonian with nearest neighbor interactions:

H =
N∑

x=1

ε(x), ε(x) = p2(x)

2
+ V [r(x)], (2)

where the particles are assumed to have unit mass. From the
Hamiltonian equations of motion one concludes that stretch
r(x), momentum p(x), and energy ε(x) are locally conserved
and satisfy the following equations of motion:

∂r(x,t)

∂t
= ∂p(x,t)

∂x
,

∂p(x,t)

∂t
= −∂P (x,t)

∂x
, (3)

∂e(x,t)

∂t
= − ∂

∂x
[p(x,t)P (x,t)],

where P (x) = −V ′(x − 1) is the local force and ∂f/∂x =
f (x + 1) − f (x) denotes the discrete derivative. Assume that
the system is in a state of thermal equilibrium at zero total
average momentum in such a way that, respectively, the
average energy and average stretch are fixed by the temperature
(T = β−1) and pressure (P ) of the chain. This corresponds to
an ensemble defined by the distribution

P({p(x),r(x)}) =
N∏

x=1

e−β[p2
x/2+V (rx )+Prx ]

Zx

,

(4)

Zx =
∫ ∞

−∞
dp

∫ ∞

−∞
dr e−β[p2/2+V (r)+Pr].

Now consider small fluctuations of the conserved quanti-
ties about their equilibrium values, u1(x,t) = r(x,t) − 〈r〉eq,
u2(x,t) = p(x,t), and u3(x,t) = ε(x,t) − 〈ε〉eq. The fluctuat-
ing hydrodynamic equations for the field �u = (u1,u2,u3) are
now written by expanding the conserved currents in Eq. (3) to
second order in the nonlinearity and then adding dissipation
and noise terms to ensure thermal equilibration. Thereby one
arrives at the noisy hydrodynamic equations

∂tuα = −∂x

[
Aαβuβ + Hα

βγ uβuγ − ∂xD̃αβuβ + B̃αβξβ

]
. (5)

The noise and dissipation matrices B̃,D̃ are related by the
fluctuation-dissipation relation D̃C + CD̃ = B̃B̃T , where the
matrix C corresponds to equilibrium correlations and has
elements Cαβ(x) = 〈uα(x,0)uβ (0,0)〉. By power counting,
higher order terms in the expansion are irrelevant at large
scales with the exception of cubic terms which may result
in logarithmic corrections. The noise term reflects that the
dynamics is sufficiently chaotic, which indirectly rules out
integrable systems.

We switch to normal modes of the linearized equations
through the transformation (φ−1,φ0,φ1) = �φ = R�u, where the
matrix R acts only on the component index and diagonalizes
A, i.e., RAR−1 = diag(−c,0,c). The diagonal form implies
that there are two sound modes, φ±, traveling at speed c in
opposite directions and one stationary but decaying heat mode,
φ0. The quantities of interest are the equilibrium spatiotempo-
ral correlation functions Css ′ (x,t) = 〈φs(x,t)φs ′(0,0)〉, where
s,s ′ = −,0,+. Because the modes separate linearly in time,
one argues that the off-diagonal matrix elements of the
correlator are small compared to the diagonal ones and that
the dynamics of the diagonal terms decouples into three single
component equations. These have then the structure of the
noisy Burgers equation, for which the exact scaling function,
denoted by fKPZ, is available. This works well for the sound
peaks. But for the heat peak the self-coupling coefficient
vanishes whatever the interaction potential. Thus one has
to study the subleading corrections, which at present can
be done only within mode-coupling approximation, resulting
in the symmetric Lévy walk distribution. While this is an
approximation, it seems to be very accurate. For the generic
case of nonzero pressure, i.e., P 	= 0, which corresponds
either to asymmetric interparticle potentials or to an externally
applied stress, the prediction for the left-moving (respectively,
right-moving) sound peaks and the heat mode are

C−−(x,t) = 1

(λst)2/3
fKPZ

[
(x + ct)

(λst)2/3

]
,

(6)

C++(x,t) = 1

(λst)2/3
fKPZ

[
(x − ct)

(λst)2/3

]
,

C00(x,t) = 1

(λet)3/5
f

5/3
LW

[
x

(λet)3/5

]
. (7)

fKPZ(x) is the Kardar-Parisi-Zhang (KPZ) scaling function
discussed in [31,36], and tabulated in [37]. f ν

LW(x) is the
Fourier transform of the Lévy characteristic function e−|k|ν .
For an even potential at P = 0, all self-coupling coefficients
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vanish and, within mode-coupling approximation, one obtains

C−−(x,t) = 1(
λ0

s t
)1/2 fG

[
(x + ct)(
λ0

s t
)1/2

]
,

(8)

C++(x,t) = 1(
λ0

s t
)1/2 fG

[
(x − ct)(
λ0

s t
)1/2

]
,

C00(x,t) = 1(
λ0

e t
)2/3 f

3/2
LW

[
x(

λ0
e t

)2/3

]
, (9)

where fG(x) is the unit Gaussian with zero mean. In a
recent contribution [38], a model with the same signatures
is studied and their exact result agrees with the mode-coupling
predictions (8) and (9).

For the nonzero pressure case, the scaling coefficients λs

and λe for the sound and heat mode, respectively, are given by

λs = 2
√

2
∣∣G1

11

∣∣,
(10)

λe = λs
−2/3c−1/3

(
G0

11

)2
ae,

where ae = 2
√

3
(1/3)
∫ ∞
−∞ dxfKPZ(x)2 = 3.167... is a

model-independent numerical constant, and the matrices Gα

are related to the nonlinear coupling matrices Hα through the
normal mode transformation defined by R (see Appendix for
details). For the case of an even potential at zero pressure,
the sound peaks are diffusive. The coefficient λ0

s is a transport
coefficient which in principle is determined through a Green-
Kubo formula. Thus an explicit formula is unlikely and λ0

s

remains undetermined by the theory. In contrast, for the generic
case the leading coefficients are obtained from static averages.
The heat mode couples to the sound modes and its exact scaling
coefficient is

λ0
e = (

λ0
s

)−1/2
c−1/2

(
G0

11

)2
(4π )2a0

e , (11)

where a0
e = 4

∫ ∞
0 dt t−1/2cos(t)

∫ ∞
−∞ dx fG(x)2 = √

2. From
a simulation of the microscopic dynamics one obtains λ0

s ,
and from there one calculates λ0

e using the above formula.
In the following section, we discuss the various correlation
functions obtained from our molecular dynamics simulations
and compare them with the scaling predictions.

III. MOLECULAR DYNAMICS SIMULATIONS

To verify the predictions from hydrodynamics, we consider
the FPU α-β model described by the following interparticle
potential

V (r) = k2
r2

2
+ k3

r3

3
+ k4

r4

4
. (12)

The set of variables {r(x),p(x)}, x = 1,2, . . . ,N , are evolved
according to the equations of motion

ṙ(x) = p(x + 1) − p(x),
(13)

ṗ(x) = V ′ [r(x)] − V ′ [r(x − 1)] ,

with initial conditions chosen from the distribution given by
Eq. (4). For the product measure it is easy to generate the initial
distribution directly and one does not need to dynamically

FIG. 1. (Color online) Set I: The parameters of the simulation are
k2 = 1, k3 = 2, k4 = 1, T = 0.5, P = 1 and system size N = 8192.
Correlation functions for the heat mode and the two sound modes at
three different times. At the latest time we see that the heat and sound
modes are well separated. The speed of sound is c = 1.454 68.

equilibrate the system. The integrations have been done using
both the velocity-Verlet algorithm [39] and also through the
fourth order Runge-Kutta algorithm and we do not find any
significant difference. The full set of two-point correlation
functions were obtained by averaging over around 106–107

initial conditions. Here we present results for five different
parameter sets.

Set I: k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 0.5, P = 1.0.
This is the set of parameters used in [30] for the numerical
solutions of the mode-coupling equations. In Fig. 1 we show
the heat mode correlation C00 and the sound mode correlations
C−−,C++ at three different times. The speed of sound is
c = 1.454 68... . The dotted vertical lines in the figure indicate
the distances � = ct . The sound peaks are at their anticipated
positions. In Fig. 2 we show the heat mode and the left-moving
sound mode after scaling according to the predictions in
Eqs. (6) and (7). One can see that the scaling is very good,
while the diffusive scaling in Fig. 3 does not work. For
comparison we have also plotted a Lévy-stable distribution
and the KPZ scaling function [37], and find that the agreement
is good for the heat mode but not so good for the sound
mode. One observes a still significant asymmetry in the sound
mode correlations, contrary to what one would expect from
the symmetric KPZ function.

From our numerical fits shown in Fig. 2 we obtain the esti-
mates λs = 2.05 and λe = 13.8. The theoretical values based
on Eq. (10) are λs = 0.675 and λe = 1.97 (see Appendix),
which thus deviates significantly from the numerical estimates
obtained from the simulations. The disagreement could mean
that, for this choice of parameters, we are still not in the
asymptotic hydrodynamic regime. We expect that the scaling
will improve if the heat and sound modes are more strongly
decoupled. To check this, we simulated a set of parameters
where the sound speed is higher and the separation between
the sound and heat modes is more pronounced. We now discuss
this case.

Set II: k2 = 1.0, k3 = 2.0, k4 = 1.0, T = 5.0, P = 1.0.
This choice of parameters gives c = 1.802 93 and we see
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FIG. 2. (Color online) Set I: Same parameters as in Fig. 1. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations,
at different times, using a Lévy-type scaling for the heat mode and KPZ-type scaling for the sound mode. We see here that the collapse of
different time data is very good. The fit to the Lévy-stable distribution with λe = 13.8 is quite good, while the fit to the KPZ scaling function
with λs = 2.05 is not convincing.

in Fig. 4 there is much better separation of the heat and
sound modes. We again find an excellent collapse of the heat
mode and the sound mode data with the expected scalings
in Fig. 5. The heat mode fits very well to the Lévy-scaling
function. However the sound-mode scaling function still shows
significant asymmetry and is different from the KPZ function.
The theoretical obtained values of λs = 0.396 and λe = 5.89
are now close to the numerically estimated values λs = 0.46
and λe = 5.86.

Set III: k2 = 1.0, k3 = −1.0, k4 = 1.0, T = 0.1, P =
0.077 76. Our third choice of the parameter set is motivated by
recent nonequilibrium simulations [24,26] which find that the
thermal conductivity κ at low temperatures seems to converge
to a size-independent value, contradicting the expectation that

heat conduction is anomalous and κ should diverge with
system size at all temperatures. It has been suggested that
this could be a finite-size effect [27–29], but this has not been
established convincingly yet. Here we want to explore if the
equal-time correlations show any signatures of diffusive heat
transport and if they provide any additional insight regarding
the strong finite-size effects seen in the nonequilibrium studies.
The temperature chosen is T = 0.1, which for the FPU
potential parameters above correspond to the regime at which
normal conduction has been proposed.

The speed of sound is calculated to be c = 1.093 52, which
matches with the numerical data, as seen in Figs. 6 and 7. The
heat mode seems to follow the predicted anomalous scaling
reasonably well (though the convergence is, as expected,
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0
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t=800
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(b)

FIG. 3. (Color online) Set I: Same parameters as in Fig. 1. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations, at
different times, using a diffusive scaling ansatz. We see here that the collapse of different time data is not very good and so clearly the modes
are not diffusive.
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FIG. 4. (Color online) Set II: Heat and sound mode correlations
at three different times for the parameter set as in Fig. 1 but with
T = 5.0 and system size 16 384. The speed of sound in this case was
c = 1.802 93. In this case we see that the separation of the heat and
sound modes is faster and more pronounced than for the parameter
set of Fig. 1.

slower than in the high-temperature case). We have checked
that the same data, when scaled as t1/2C00(x/t1/2) for different
times, shows no indication of convergence. Thus we find no
evidence for normal heat diffusion at low temperatures. The
sound mode agrees quite well with the KPZ-type scaling
observed for higher temperatures, though the shape of the
correlation function remains asymmetric as in the high-
temperature case.

It will be noted that the heat mode shows two peaks near
the edges which do not follow the Lévy scaling; these peaks
arise from interaction with the sound modes, indicating that
there is still some overlap between the two modes near the
edges. The sound mode, on the other hand, is found to be
undistorted, which is consistent with the prediction from [31]
that at long times the mode-coupling equations for the sound
modes becomes independent of the heat mode, but not vice
versa. The same effect can be seen in sets I and II, but are
less pronounced as the modes separate more quickly at higher
temperatures.

Set IV: k2 = 1.0, k3 = 0.0, k4 = 1.0, T = 1.0, P = 0.0.
This is the special case of an even potential at zero pressure for

-2000 -1000 0 1000 2000
x

0

0.002

0.004

0.006

0.008
t=800
t=1200
t=1600

FIG. 6. (Color online) Set III: Low-temperature case. The pa-
rameters of the Hamiltonian are k2 = 1, k3 = −1, k4 = 1, T = 0.1,
P = 0.077 76, and N = 4096. In this plot we show the heat mode
correlation and the two sound mode correlations at three different
times. In this case the separation between heat and sound modes is
less pronounced.

which the prediction from the theory is a diffusive sound mode,
while the heat mode is Lévy but with a different exponent.
The predicted scalings are given in Eqs. (8) and (9). The speed
of sound for this case is c = 1.461 89. We see from Fig. 8
that the proposed scaling leads to an excellent collapse of the
heat mode at different times. The sound mode, with diffusive
scaling, shows a strong convergence but not yet a collapse.
Figure 9 shows the same data but scaled according to the
predictions in the nonzero pressure case. It is clear that the
data are nonconvergent with this scaling.

The sound mode is predicted by the theory to be Gaussian,
Eq. (8), but as seen from Fig. 8, the fit to the Gaussian form
is poor. From the data we estimate that λ0

s = 0.416, and upon
using Eq. (11), we find λ0

e = 1.17, whereas the numerically
obtained value is 3.18.

Set V: k2 = 1.0, k3 = 0.0, k4 = 1.0, T = 1.0, P = 1.0.
Parameters are identical to the above set, except that the
pressure is nonzero. Since the potential is even, the pressure
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FIG. 5. (Color online) Set II: Same parameters as in Fig. 4. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations
at different times, using a Lévy-type scaling for the heat mode and KPZ-type scaling for the sound mode. We see here that the collapse of
different time data is very good. Again we find a very good fit to the Lévy-stable distribution with λe = 5.86 while the fit to the KPZ scaling
function, with λs = 0.46, is not yet perfect.
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FIG. 7. (Color online) Set III: Same set of parameters as in Fig. 6. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations,
at different times, using a Lévy-type scaling for the heat mode and KPZ-type scaling for the sound mode. We see here that the collapse of
different time data for the heat mode is reasonably good.

arises from externally applied stress to the system. The speed of
sound is c = 1.591 43. We find in Fig. 10 that the correlations
satisfy the same scaling as for asymmetric potentials with
nonzero pressure (as in sets I, II, and III). This confirms
that the universality class is determined by the asymmetry
of V (r) + Pr and not of V (r) by itself.

IV. DISCUSSION

We have performed numerical simulations of FPU chains to
test the predictions of nonlinear fluctuating hydrodynamics in
one dimension [31]. The theory predicts the existence of a zero
velocity heat mode and two mirror image outwards moving
sound modes, and provides the asymptotic scaling form for
their broadening. We have tested the theory for various param-
eter regimes, including high and low temperatures, and zero
and nonzero pressure. For nonzero pressure, we find that the
heat mode scales according to the Lévy−5/3 distribution, as
predicted by the theory, both at high and low temperatures. This

implies that for one-dimensional heat transport (in momentum-
conserving systems) the scaling is generically anomalous.
There are no signatures of a nonequilibrium phase transition
(or crossover) from anomalous to normal conduction. For the
case of an even potential at zero pressure, the heat mode
scales according to the Lévy−3/2 distribution as predicted,
thus confirming the existence of a second universality class
for heat transport in one-dimensional momentum-conserving
systems.

For nonzero pressure the sound mode scales with the same
exponent as the stationary one-dimensional KPZ equation, but
the shape of the modes is observed to still deviate from the
KPZ scaling function. This could be because the simulation
times are not in the asymptotic regime for the sound modes,
which would be consistent with the slowly decaying correction
terms to the scaling of the sound mode as discussed in [31].
Thus the prediction that the sound mode correlations scale
according to the KPZ function is not conclusively verified.
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FIG. 8. (Color online) Set IV: Even potential, zero pressure case. The parameters of the Hamiltonian are k2 = 1, k3 = 0, k4 = 1, P = 0,
T = 1, and N = 8192. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations, at different times, using a Lévy-type scaling
for the heat mode and diffusive scaling for the sound mode. The scaling used here corresponds to Eqs. (8) and (9), with λ0

s = 0.416 and
λ0

e = 3.28.
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FIG. 9. (Color online) Set IV: Parameters same as in Fig. 8. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations, at
different times, using a Lévy-type scaling for the heat mode and KPZ-type scaling for the sound mode. The scaling used here corresponds to
Eqs. (6) and (7). We see that the collapse is not as good as in Fig. 8.

The case of an even potential at zero pressure is very similar,
with the sound mode satisfying diffusive scaling, but the
limit of the Gaussian shape function not being reached in our
simulations.

Although the Lévy stable distribution fits the heat mode
very well, we find that at low temperatures the theoretically
predicted values for the scaling coefficients λs and λe do
not closely match the numerical values. This is consistent
with the numerical study in [32], where the authors find
that for certain hard-point potentials the scaling shape has
an excellent match, but the scaling coefficients are still
drifting and one might expect them to converge to the
predicted values at larger times. However, at high temperatures
where the modes separate quickly and thus the asymptotic
scaling forms are presumably reached faster, the theoretical
λe matches very well with the numerical data, and the
theoretical λs is not far off from the numerically obtained
value.

The studies here confirm that heat conduction in one-
dimensional chains is anomalous and is universal, except for

the special case of zero pressure and even potentials. Thus the
heat conduction exponent is α = 1/3 for the general case,
and α = 1/2 for the special case. An open and important
question is to tie up the picture obtained from the correlation
dynamics in our equilibrium studies, with some of the recent
claims of normal diffusive transport seen in studies, both
equilibrium [23,26,28,29] and nonequilibrium [24,27–29], on
FPU systems in particular parameter regimes, and some other
momentum-conserving systems. In these systems that appar-
ently show normal transport, the nonequilibrium simulations
show an apparent saturation of the thermal conductivity with
increasing system size, while equilibrium studies show an
exponential temporal decay of current autocorrelations. Some
of our simulations were in fact done in parameter regimes
(low temperatures, asymmetric potentials) where diffusivelike
transport had been reported in some earlier work based on
nonequilibrium simulations [27]. However, we do not see
any signatures of this apparent diffusive behavior (possibly
related to finite-size effects). Thus, the finite-size effects do not
show up in our equilibrium studies on the ring, and hence are
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FIG. 10. (Color online) Set V: Even potential, finite pressure case. The parameters of the Hamiltonian are k2 = 1, k3 = 0, k4 = 1, P = 1,
T = 1, and N = 3200. Scaled plots of (a) heat mode and (b) left-moving sound mode correlations, at different times, using a Lévy-type scaling
for the heat mode and KPZ-type scaling for the sound mode. The scaling corresponding to Eqs. (6) and (7), with λs = 0.77 and λe = 14.5. We
have checked that the scaling in Eqs. (8) and (9) does not work as well.

012124-7



DAS, DHAR, SAITO, MENDL, AND SPOHN PHYSICAL REVIEW E 90, 012124 (2014)

presumably related to effects arising due to boundary effects
(present in the open systems used in nonequilibrium studies).
One can add to nonlinear fluctuating hydrodynamics thermal
boundary conditions. But no reliable predictions on the steady
state properties have been achieved so far. In particular, a clear
microscopic understanding of the puzzling strong finite-size
effects is lacking. Understanding the reported exponential
temporal decay of the equilibrium current autocorrelation
function is probably a simpler issue that should be resolved,
but more detailed comparisons are needed between numerics
and theory.
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APPENDIX

The matrix R, which diagonalizes the matrix A, is given by

R =
√

2β

c2

⎛⎜⎝∂lp −c ∂ep

κ̃p 0 κ̃

∂lp c ∂ep

⎞⎟⎠ , (A1)

where the rows, including the normalization factor, provide
the left eigenvectors Vα , α = −1,0,1, of the A matrix.

The Hessian tensor H encodes the quadratic corrections to
the couplings between the original hydrodynamic variables.
Hα

βγ represents the coupling of the field uα to the fields uβ , uγ .
The tensor can be represented through three 3 × 3 matrices,
one for each value of α,

Hu1 = 0, Hu2 =

⎛⎜⎝ ∂2
l p 0 ∂l∂ep

0 −∂ep 0

∂l∂ep 0 ∂2
e p

⎞⎟⎠ ,

Hu3 =

⎛⎜⎝ 0 ∂lp 0

∂lp 0 ∂ep

0 ∂ep 0

⎞⎟⎠ .

After transforming to the normal modes �φ, the nonlinear
hydrodynamic equations become

∂tφα = −∂x[cαφα + 〈�φ · Gα �φ〉 − ∂x(Dφ)α + (Bξ )α].

The term in angular brackets is the inner product of Gα

with respect to �φ. Also, D = RD̃R−1 and B = RB̃ satisfy the
fluctuation-dissipation relation BBT = 2D. The vector �c =
(−c,0,c). The matrix Gα represents the coupling of the normal
mode α to the other modes, and is given by

Gα = 1

2

∑
α

′Rαα′ (R−1)T Hα′
R−1. (A2)

The values of the mode index α = −1,0,1 correspond respec-
tively to the left-moving sound mode, heat mode, and right-

moving sound mode. The elements of Gα can be represented
through cumulants of V,r with respect to the single site
distribution up to order three (see [31]).

The values of R, G0, and G1 are given below. The elements
of G−1 are a rearrangement of the elements of G1 as follows
from G−1

−α−α′ = −G1
αα′ , G−1

−10 = G−1
01 , and G−1

αα′ = G−1
α′α [31].

The long time behavior is dominated by the diagonal G

entries. The off-diagonal entries are irrelevant. Gα
αα are the

self-couplings. Note that G0
00 = 0, as claimed before. Also

for the even potential at zero pressure case the only leading
terms are G0

αα , α = ±1. There is considerable variation in the
diagonal matrix elements.

Set I:

R =
⎛⎝−0.7935 −1.0 0.66118

1.89594 0.0 1.89594

−0.7935 1.0 0.66118

⎞⎠ ,

G0 =
⎛⎝−0.689497 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.689497

⎞⎠ ,

G1 =
⎛⎝−0.24236 −0.075565 0.238543

−0.075565 −0.0669417 −0.075565

0.238543 −0.075565 0.238543

⎞⎠ .

Set II:

R =
⎛⎝−0.547157 −0.316228 0.0229798

0.229483 0.0 0.229483

−0.547157 0.316228 0.0229798

⎞⎠ ,

G0 =
⎛⎝−1.03436 0.0 0.0

0.0 0.0 0.0

0.0 0.0 1.03436

⎞⎠ ,

G1 =
⎛⎝−0.0671336 0.240399 0.140022

0.240399 −0.152971 0.240399

0.140022 0.240399 0.140022

⎞⎠ .

Set III:

R =
⎛⎝−2.3376 −2.23607 1.38344

0.793106 0.0 10.1994;

−2.3376 2.23607 1.38344

⎞⎠ ,

G0 =
⎛⎝−0.55766 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.55766

⎞⎠ ,

G1 =
⎛⎝−0.0721968 0.0206018 0.0790847

0.0206018 −0.0353259 0.0206018

0.0790847 0.0206018 0.0790847

⎞⎠ .
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Set IV:

R =
⎛⎝−1.03371 −0.707107 0.0

0.0 0.0 1.09893

−1.03371 0.707107 0.0

⎞⎠ ,

G0 =
⎛⎝−0.803254 0.0 0.0

0.0 0.0 0.0

0.0 0.0 0.803254

⎞⎠ ,

G1 =
⎛⎝0.0 0.133622 0.0

0.133622 0.0 0.133622

0.0 0.133622 0.0

⎞⎠
.

Set V:

R =
⎛⎝−0.964170 −0.707106 −0.964171

1.05385 0.0 1.05385584

0.161141 0.707107 0.161141

⎞⎠ ,

G0 =
⎛⎝−0.838569 0.0 0.0

0.0 0.0 0.0

0 0 0.838569

⎞⎠ ,

G1 =
⎛⎝−0.112782 0.07359 0.143663

0.07359 −0.104607 0.07359

0.143663 0.07359 0.143663

⎞⎠
.
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