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ABSTRACT: In this paper, we study numerical discretiza-
tions to solve density functional models in the “strictly
correlated electrons” (SCE) framework. Unlike previous
studies, our work is not restricted to radially symmetric
densities. In the SCE framework, the exchange-correlation
functional encodes the effects of the strong correlation regime
by minimizing the pairwise Coulomb repulsion, resulting in an
optimal transport problem. We give a mathematical derivation
of the self-consistent Kohn−Sham−SCE equations, construct
an efficient numerical discretization for this type of problem
for N = 2 electrons, and apply it to the H2 molecule in its dissociating limit.

1. INTRODUCTION
In the ab initio quantum mechanical modeling of many-particle
systems, Kohn−Sham density functional theory (DFT)1,2

achieves so far the best compromise between accuracy and
computational cost and has become the most widely used
electronic structure model in molecular simulations and
material science. In principle, the ground state energy and
electron density of an N-electron system can be obtained by
minimizing the Kohn−Sham energy functional. The major
drawback of DFT is that the exact functional for the so-called
exchange-correlation energy is not known, which includes all
the many-particle effects. A basic model is the local density
approximation (LDA),2,3 which is still commonly used in
practical calculations. Improvements of this model give rise to
the generalized gradient approximation (GGA)4−6 and hybrid
functionals.7−9 Although these models have achieved high
accuracy for many chemical and physical systems, there remain
well-known limitations. For example, in systems with significant
static correlation,10 LDA, GGA, and also hybrid functionals
underestimate the magnitude of the correlation energy. This
becomes particularly problematic for the dissociation of
electron pair bonds. An example is the dissociating H2
molecule: the widely employed LDA, GGA, and even hybrid
models fail rather badly at describing the energy curve for
dissociating H2. Many efforts have been made in order to make
an appropriate ansatz for the exchange-correlation functional
and tackle this problem (e.g., refs 11, 12). In our view, a
principal deficiency of these works is the attempt to describe
strong correlation within the framework of mean field
approximations.
Alternatively, DFT calculations can also be based on the

strongly interacting limit of the Hohenberg−Kohn density
functional, denoted “strictly correlated electrons” (SCE)
DFT.13,14 This approach considers a reference system with
complete correlation between the electrons and is able to
capture key features of strong correlation within the Kohn−

Sham framework. The pioneering work14−16 has shown that the
SCE ansatz can describe certain model systems in the extreme
strongly correlated regime with higher accuracy than standard
Kohn−Sham DFT. However, the calculations are presently
limited to either one-dimensional or spherically symmetric
systems. To our knowledge, there is no SCE-DFT calculation
for dissociating the H2 molecule in 3. Moreover, the SCE
model may be a promising ingredient for future developments
of the DFT energy functionals, as it yields qualitative insight
into the electron correlations.17,18 Therefore, it will be
necessary to design approximations of SCE physics for general
three-dimensional systems.
In the SCE-DFT model, the repulsive energy between

strongly interacting electrons is related to optimal transport
theory. Optimal transport was historically studied19 to model
the most economical way of moving soil from one area to
another and was further generalized20,21 to the Kantorovich
primal and dual formulation. The goal is to transfer masses
from an initial density ρA to a target density ρB in an optimal
way such that the “cost” c(x,y) for transporting mass from x to y
is minimized (see ref 22 for a comprehensive treatment). The
Coulomb repulsive energy in the SCE-DFT model can be
reformulated as the optimal cost of an optimal transport
problem, if we identify the marginals with the electron density
divided by the number of electrons, i.e., ρ/N, and the cost
function with the electron−electron Coulomb repulsion
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For instance, for a two-electron system within the SCE-DFT
framework, the electron repulsive energy for a given single-
particle electron density ρ is
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Strictly speaking, the set of admissible |Ψ|2’s must be enlarged
to probability measures in order to allow strict correlation,
which corresponds to concentration of the many-body
probability density on a lower dimensional subset.23 There
are several mathematical investigations of the relations between
SCE-DFT and optimal transport problems, see refs 23−26, but
important open problems remain. To our knowledge, the
functional derivative of the SCE functional of eq 2 (alias
optimal cost functional) with respect to the electron density
(alias marginal measure) is not clear from a mathematical point
of view. However, this result is crucial for deriving the Kohn−
Sham equations needed in practical calculations. Numerical
algorithms for optimal transport problems are rather sparse.
Explicit solutions for the co-motion functions are known for
one-dimensional and spherically symmetric problems14 but
cannot be generalized to nonspherical two- and three-
dimensional systems. An alternative route might be the
Kantorovich dual formulation of the SCE functional.24,27 In a
complementary work,28 the H2 molecule is studied using an
ansatz for the dual potential, and there is a recent simulation of
a one-dimensional model H2 molecule using the SCE
framework.18

In this paper, we give a mathematical derivation of the
Kohn−Sham equations for optimal transport-based DFT,
which is rigorous up to physically expected uniqueness,
smoothness, and continuity assumptions (section 3); provide
an efficient numerical algorithm for discretizing and solving the
resulting optimal transport problem for the case of two
electrons without restriction to radial symmetry (section 4);
and then apply this algorithm to a self-consistent DFT
simulation of the H2 molecule in the dissociating limit (section
5). Finally, we show both numerically and by a rigorous
mathematical argument that the SCE-DFT model is accurate
for the H2 molecule in the dissociating limit.

2. PRELIMINARIES
Consider a molecular system with M nuclei of charges
{Z1,...,ZM}, located at positions {R1,...,RM}, and N electrons in
the nonrelativistic setting. The electrostatic potential generated
by the nuclei is
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Within the DFT framework,1,29 the ground state density and
energy of the system is obtained by solving the following
minimization problem:
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where ρ is the electron density and FHK[ρ] is the so-called
Hohenberg−Kohn functional.1 FHK is a universal functional of
ρ in the sense that it does not depend on the external potential
vext. Unfortunately, no tractable expression for FHK is known

that could be used in numerical simulations. Standard Kohn−
Sham DFT2 treats the system as N noninteracting electrons
and approximates FHK[ρ] by the sum of the kinetic energy

∫

∫

∑

∑

ρ ϕ ϕ

ϕ ρ ϕϕ δ

= |∇ | ∈

| | = =

=

=

⎪

⎪

⎪

⎪

⎧
⎨
⎩

⎫
⎬
⎭






T Hr r

r r

[ ] inf
1
2

( ) d , ( ),

( ) ( ),

i

N

i i

i

N

i i j ij

KS
1

2 1 3

1

2

3

3
(4)

the Hartree energy EH[ρ] = 1/2∫ ∫
 3 3ρ(r)ρ(r′)|r − r′|−1 dr dr′,

and an exchange-correlation energy Exc[ρ].
Since the standard noninteracting model cannot capture the

features that result from strong correlation, it is not able to
simulate strongly correlated electron systems, like the H2
molecule in its dissociating limit. In contrast to that, the
SCE-DFT model14,30,31 starts from the strongly interacting
limit (semiclassical limit) of FHK and gives rise to the following
SCE functional (see ref 26 for a mathematical justification)
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to replace EH[ρ] + Exc[ρ] in standard Kohn−Sham DFT, where

∫ρ ρ= ···
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with cee given by eq 1, and ρN |→ ρ means that ρ is the marginal
distribution of ρN, that is to say

∫ρ ρ=
−
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The minimization in eq 5 is over all symmetric N-point
probability measures ρN which have the given single-particle
density ρ as marginal and yields the minimum of the electronic
Coulomb repulsive energy over all such ρN.
The minimization task in eq 5 is in fact an optimal transport

problem with Coulomb cost,23,24,26 which has two alternative
formulations: the Monge formulation and the Kantorovich dual
formulation. For the Monge formulation, one uses the ansatz

ρ
ρ
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with Ti:
3 → 3 (i = 2,...,N) the so-called co-motion functions

(also called optimal transport maps), where we use the
convention T1(r) = r. The above ansatz already appears on
physical grounds, without reference to optimal transport
theory, in ref 14. Since the N-particle distribution ρN in eq 7
is zero everywhere except on the set

= ∈ M T Tr r r r{( , ( ), ..., ( )), }N2
3

(8)

it describes a state where the location of one electron fixes all
the other N − 1 electrons through the co-motion functions Ti, i
= 2,...,N. The co-motion functions are implicit functionals of the
density, determined by the minimization problem in eq 5 and a
set of differential equations that ensure the invariance of the
density under the coordinate transformation r |→ Ti(r),

14 i.e.,

ρ ρ=T Tr r r r( ( )) d ( ) ( ) di i (9)

In terms of these functions, the optimal value of eq 5 reads

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500586q | J. Chem. Theory Comput. 2014, 10, 4360−43684361



∫ρ ρ=


V
N

c T Tr r r r[ ]
1

( ) ( ( ), ..., ( )) dNee
SCE

ee 13 (10)

Note that the ansatz eq 7 is not in general symmetric under
exchanging particle coordinates; nevertheless, dropping the
symmetrization does not alter the minimum value of eq 5.
Alternatively, one can start from the so-called Kantorovich

dual formulation.21,22 It has been shown24 that the value of
Vee
SCE[ρ] is exactly given by the maximum of this Kantorovich

dual problem
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In what follows, we denote the maximizer of eq 11 by uρ, which
is called the Kantorovich potential. We assume that uρ is unique
and depends continuously on ρ in the sense that
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In mathematical language, this means uρj converges weakly* to
uρ in L∞(3) if ρj tends to ρ in L1(3).
For numerical implementations, the Kantorovich dual

formulation has high complexity due to the 3N-dimensionality
of the constraints. In comparison, the Monge formulation
amounts to a spectacular dimension reduction, in which the
unknowns are N − 1 maps on 3 instead of one function ρN on
3N. However, numerical simulations are currently restricted to
spherically symmetric densities and one-dimensional systems,
for which the intricate constraints 9 can be solved semianalyti-
cally. As a first step toward efficient numerical discretization of
the Monge formulation, we deal hear with nonspherical systems
with N = 2 electrons.

3. KOHN−SHAM EQUATIONS FOR OPTIMAL
TRANSPORT BASED DFT

By taking Vee
SCE as the only interaction term within the Kohn−

Sham DFT framework, we can obtain the ground state
approximations of energy and electron density by solving the
following minimization problem

∫ϕ ϕϕ δ= Φ ∈ =
Φ
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where Φ = (ϕ1,...,ϕN) denotes the Kohn−Sham orbitals and
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with ρΦ(r) = ∑i=1
N |ϕi(r)|

2. We shall derive the self-consistent
Kohn−Sham equations for eq 13 in this section. The key point
is to calculate the functional derivative δVee

SCE[ρ]/δρ of the SCE
functional with respect to the single particle density ρ, which is
the effective one-body potential coming from the interaction
term. In the derivation below, we make various plausible
assumptions on the Kantorovich potential such as uniqueness,
continuous dependence on the density, and differentiability at

relevant points. We believe these assumptions to be correct
except possibly in exceptional situations. A fully rigorous
treatment without these assumptions would be desirable but
lies beyond the scope of this paper.
Note that the functional Vee

SCE[ρ] is not defined on arbitrary
densities, but only on those with ∫

3 ρ = N. Therefore, the

definition of the functional derivative only specifies its integral
against perturbations in the corresponding “tangent space”, that
is to say perturbations that have integral zero:
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The following theorem indicates that the functional
derivative is nothing but the Kantorovich potential uρ with an
additive constant.
Theorem 1. Assume that the Kantorovich potential uρ, i.e.,

the maximizer of eq 11, is unique and depends continuously on
the electron density ρ in the sense of eq 12. Then Vee

SCE[ρ] is
differentiable at ρ, and the functional derivative is given by

δ ρ
δρ

ρ = +ρ
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Proof. For any given single-particle density ρ with ∫
3ρ = N,

and any perturbation ρ̃ with ∫
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Using the fact that uρ+ερ̃ and uρ are maximizers of eq 11 with
electron density ρ + ερ̃ and ρ, respectively, we have
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Substituting eq 18 into eq 17 gives

∫ ∫ρ ε ρ̃ ≤ ≤ ̃ρ ε ρ ερ+ ̃
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Under the uniqueness and continuity assumption eq 12, the
right-hand side of eq 19 converges to the left-hand side as ε →
0. Hence, for any ρ̃ with ∫

3ρ̃ = 0, limε→0Dε exists and equals

∫
3uρρ̃. This together with definition 15 leads to vSCE[ρ] = uρ.

Note that the map ρ̃ |→ ∫
3((δVee

SCE[ρ])/δρ)ρ̃ is unique up

to an additive constant since ∫
3ρ̃ = 0. Therefore, the functional

derivative viewed as a function can be modified by any additive
constant C. This completes the proof.
The following theorem shows that the Kantorovich potential

uρ is related to the co-motion functions in the Monge
formulation. With respect to an at first sight different notion
of effective one-body potential, this was noted and justified in
ref 14. Our proof in Appendix A proceeds by combining the
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result of ref 14 with a proof that their notion of effective
potential actually coincides with the Kantorovich potential.
Theorem 2. Let ρN be the minimizer of the optimal

transport problem eq 5 with given single-particle density ρ and
any interaction cee(r1,r2,...,rN). If uρ is the Kantorovich potential,
i.e., the maximizer of eq 11, and uρ is differentiable, then

ρ∇ = ∇ρu cr r r r( ) ( , , ..., ) on supp( )N Nr ee 2 (20)

In particular, if ρN is of the Monge form eq 7, then supp(ρN) =
M (see eq 8) and
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Note that solving this equation for T(r) gives an instance of the
celebrated Gangbo−McCann formula32 for the optimal map in
terms of the Kantorovich potential. For the Coulomb cost, this
formula takes the form23
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However, unlike eq 24, formula 23 generalizes (in the form of
eq 22) to many-body or multimarginal problems. Thus, formula
22 (or 21) should be viewed as the correct generalization of the
Gangbo−McCann formula to multimarginal problems; note
also that our derivation works for general costs cee(r1,...,rN).
Theorems 1 and 2 yield the Kohn−Sham equations

corresponding to the SCE energy functional 14 with a
computable effective potential. They are the Euler−Lagrange
equations corresponding to the minimization problem 13 (after
a unitary transformation to diagonalize the symmetric N × N
matrix of Lagrange multipliers): find λi ∈ ,ϕi ∈ H1(3)(i =
1,2,...,N) such that
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This is a nonlinear eigenvalue problem, where the potential
uρΦ depends on the electron density ρΦ associated with the
orbitals ϕi. A self-consistent field (SCF) iteration algorithm is
commonly resorted to for this nonlinear problem. In each
iteration step of the algorithm, a new effective potential is
constructed from a trial electron density and a linear eigenvalue
problem is then solved to obtain the low-lying eigenvalues.
We shall comment further on the additive constant in eq 16.

Modifying uρΦ by an arbitrary additive constant yields the same
Kohn−Sham orbitals ϕi and only leads to a corresponding shift
of the nonlinear eigenvalues λi. However, as pointed out in ref
26, it is only when the effective potential is precisely the
Kantorovich potential that the ground state energy equals the
sum of Kohn−Sham eigenvalues, i.e., E0 = Σi=1

N λi.

4. NUMERICAL DISCRETIZATIONS OF OPTIMAL
TRANSPORTATION

In each iteration of the SCF algorithm for solving eq 25, one
has to construct uρ̃ from a trial electron density ρ̃. According to
eq 22, this requires the solution of the optimal transport
problem 5 with a given single-particle density to obtain the co-
motion functions Ti, i = 2,...,N. For simplicity, we only consider
the case N = 2, where only one co-motion function has to be
calculated (which is denoted by T in the following). For
systems with more than two electrons, we refer to section 6 for
a future perspective.
We discretize the computational domain into n finite

elements e1,...,en. (We replace 3 by a bounded domain so
that it can be discretized into a finite number of elements. This
is reasonable since the electron density ρ(r) of a confined
system decays exponentially fast to zero as |r| → ∞.)33 Each
element is represented by a point ak located at its barycenter
and its electron mass ρk = ∫ ek ρ(r) dr. Within this discretization,
we can approximate the two-particle density |Ψ(r1,r2)|2 by a
matrix X = (xkl) ∈ n×n with xkl = |Ψ(ak,al)|2. (Alternatively, one
could identify the entries with the average xkl = 1/(|ek|·|el|)
∫ ek∫ el|Ψ(r1,r2)|

2 dr1 dr2.) The continuous problem 5 is then
discretized into
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Note that eq 26 is a linear programming problem of the form

= ≥

f x
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s. t. and 0
x
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k

where x is the vector containing the entries of X. We can solve
this problem by standard optimization routines like “linprog” in
Matlab. Due to the symmetry of the problem, one can assume
that xlk = xkl and only needs to consider xkl for k ≤ l.
As a remark, the dual problem of eq 26 (in the sense of linear

programming) results in a discretized version of the Kant-
orovich dual formulation 11.
The solution of eq 26 entails an approximation of the co-

motion functions at the barycenters {ak}1≤k≤n via the matrix X =
(xkl):

∑
ρ

= =
=

T
x

k na a( )
2

, 1, ...,n k
l

n

l
kl

l1 (27)

where xkl can also be regarded as the mass of electron
transported from ak to al. If the discretization is sufficiently fine,
i.e., n is large enough, then Tn is a good approximation of T.
For a uniform discretization {ek}1≤k≤n, the number of degrees

of freedom for linear programming eq 26 may be huge. To
reduce the computational cost, we use a locally refined mesh
instead, which has more elements where the electron density is
high and less elements where the electron density is low.
Generally speaking, the optimal mesh may be such that each
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element ek has almost equal electron mass ρk. This type of mesh
can be generated by an adaptive procedure; say, one refines the
element when its electron mass is larger than a given threshold
and coarses it otherwise. Since the electron density decays
exponentially fast to zero as |r| → ∞, the mesh is much coarser
far away from the nuclei than close to the nuclei, which reduces
the degrees of freedom significantly.
As a remark, let us assume for a moment that all elements

have exactly the same mass, ρk = ρ̅ for all k. Then the
constraints in eq 26 force X to be a doubly stochastic matrix (up
to a global scaling factor) with non-negative entries. According
to Birkhoff’s theorem, the extremal points of the convex set of
admissible matrices X are the permutations, i.e., matrices with
exactly one nonzero entry ρ̅ /2 in each row (or column). Since
the optimum is obtained at an extremal point, the optimizer can
be chosen of this form. We have thus derived a discrete
analogue of the Monge formulation, since the sum on the right
of eq 27 will have exactly one nonzero term.
Another important technique to reduce the computational

cost is to exploit the symmetry of the system. If the electron
density ρ has some kind of symmetric property, then we can
reduce the computations to some subdomain accordingly. For
example, ref 14 gives an explicit formula of co-motion functions
for spherically symmetric electron densities by making use of
the symmetry. More precisely, it is proven that if the density
has the form ρ(r) = h(|r|) with some function h:[0,∞) → ,
then the corresponding co-motion function T has to be
spherically symmetric itself, that is

= | |
| |

∀ ∈ T gr r
r
r

r( ) ( ) , 3

with some function g:[0,∞) → . This reduces the three-
dimensional spherically symmetric problem into a one-
dimensional problem.
Here, we consider cylindrically symmetric systems, for

instance, diatomic molecules. The following theorem states
that the co-motion function T inherits the cylindrical symmetry
of the density, which can be proved by using similar arguments
to those in the discussion of spherical symmetry in ref 26.
Theorem 3. Let N = 2 and denote the cylindrical coordinates

by (γ,φ,z). If ρ(r) = ϱ(γ,z) with some function ϱ: [0,∞) × 
→ , then the corresponding co-motion function T satisfies

γ φ γ φ π γ|→ ′ + ′ ∀ ∈ ∞ × T z z z: ( , , ) ( , , ) ( , ) [0, )
(28)

where (γ′,z′) = (γ,z) with some map :[0,∞) ×  → [0,∞) ×
.
An important application of the numerical methods

introduced above is to simulate the H2 molecule at its
dissociating limit. We provide more details in the next section.

5. H2 BOND DISASSOCIATION
We now consider the H2 molecule. Let R > 0 and RA =
(−R,0,0), RB = (R,0,0) be the locations of two hydrogen atoms.
Physically, the hydrogen molecule should dissociate into two
free hydrogen atoms as the bond length 2R → ∞, with the
ground state spin-unpolarized. The spin-restricted Hartree−
Fock and Kohn−Sham DFT models give the correct spin
multiplicity but overestimate total energies, i.e., higher than that
of two free hydrogen atoms. In comparison, the spin-
unrestricted models give fairly good total energies, while the
wave functions are spin-contaminated, which is known as
“symmetry breaking” in H2 bond dissociation.
Here we focus on the SCE-DFT model without symmetry

breaking and show both theoretically and numerically that the
restricted Kohn−Sham model eq 13 gives the correct ground
state energy in the dissociation limit R → ∞. Denote by e0 the
ground state energy of a single hydrogen atom
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ESCE(R) denotes the ground state energy of the hydrogen
molecule in the SCE-DFT model eq 14
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where vext(r) = −|r − RA|
−1 − |r − RB|

−1. The following result
indicates that the SCE-DFT model is correct for the H2
molecule at its dissociating limit. The rigorous proof is given
in Appendix B.
Theorem 4. Let e0 and ESCE(R) be given by eqs 29 and 30,

respectively. We have

=
→∞

E R elim ( ) 2
R

SCE 0 (31)

Figure 1. Electron density and corresponding mesh on slice z = 0 (R = 5).
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In what follows, we present a numerical simulation of the
dissociating H2 molecule to support the theory. The
computations are carried out on a bounded domain Ω =
[−10,10]3. We use an SCF algorithm to solve eq 25 for the
ground state energies and electron densities for different bond
lengths 2R. Concerning the optimal transport problem, we use
the numerical methods introduced in section 4 and calculate
the co-motion function in each SCF iteration step. The
nonuniform mesh is generated by the package PHG,34 a
toolbox for parallel adaptive finite element programs developed
at the State Key Laboratory of Scientific and Engineering
Computing of the Chinese Academy of Sciences. While the
problem is effectively two-dimensional according to Theorem
3, we have performed the calculations in three dimensions since
PHG is tailored to three-dimensional problems. Figure 1 shows
a contour plot of the electron density at slice z = 0 and the
corresponding mesh. One observes that the grid reflects the
higher density around the nuclei.
To further reduce the computational cost, we can exploit the

cylindrical symmetry of the system with the help of Theorem 3.
As shown in Figure 2, the degrees of freedom can be reduced to
1/16 of the original volume. For the linear programming
problem eq 26, we resort to MOSEK,35 high-performance
software for large-scale optimization problems.
The computational results are presented in Figure 3, in

which we compare the bond energies in dependence on R using
the LDA and SCE Kohn−Sham methods (with exact data from
ref 36). Here, the bond energies are the ground state energies
of the systems minus 2e0, which is expected to be zero when the
two hydrogen atoms are disassociated. Note that the SCE

model shows the correct asymptotic behavior, while the LDA
model fails at large R by giving too large energies. For
comparison, the LDA error 0.065 au in ref 37 for the infinitely
stretched H2 molecule is lower than that in Figure 3 since twice
the LDA-hydrogen energy is subtracted instead of twice the
exact e0, but it remains significant; errors of similar magnitude
are reported there for other functionals such as B3LYP or PBE.
A physical explanation for these results is as follows. At long

internuclear separations, if one electron is located near atom A,
the other will be found close to atom B. This correlation is
correctly reflected by the optimal transport model; hence the
SCE model gives asymptotically the same energy as the product
of hydrogen orbitals on the two nuclei. In contrast, within the
Kohn−Sham LDA framework, the two electrons are con-
strained to be in the same spatial orbital and do not experience
the position of each other. The possibility of both electrons
being on the same position is not excluded, resulting in the
wrong asymptotic behavior of the disassociation energy in
Figure 3.
We also observe from Figure 3 that the SCE model

underestimates the ground state energy badly near the
equilibrium. The reason is that the SCE approach takes the
minimum of the kinetic and Coulomb repulsive energy
separately, yielding a lower bound of the exact Hohenberg−
Kohn functional. This approach therefore gives rise to
considerable error since the minimizers of the two parts usually
have very different structures. The SCE-DFT calculations
overlocalize electrons and miss the shell structure. Despite the
failure of the SCE model near the equilibrium, we believe that it
is a promising ingredient in future DFT functionals, which aim
to provide accurate approximations in all correlation regimes
(see some recent works in refs 17, 18).
We further compare the electron densities and effective

potentials obtained by the two different models in Figure 4.
The electron densities are actually quite close, while the shape
of the potentials differs substantially when R is large. The SCE
potential is larger between the hydrogen atoms, favoring a
depletion of the bond charge as the two atoms separate. This
produces the correct results for large R.
Finally, as an illustration of the co-motion function or

optimal map, Figure 5 shows the image under the map of a
density contour.

6. CONCLUSIONS AND PERSPECTIVES

The numerical discretization of the general SCE optimal
transport problem with Coulomb cost and two marginals leads
to the linear programming problem eq 26, which can indeed be
solved in practice, as we have demonstrated in a proof of

Figure 2. Symmetric decomposition of the computation domain Ω for H2.

Figure 3. Dissociation energy curves of H2 for the exact (see ref 36),
SCE, and LDA models.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500586q | J. Chem. Theory Comput. 2014, 10, 4360−43684365



concept calculation. The self-consistent SCE-DFT simulation
of the H2 binding curve agrees well with the exact curve at the
dissociating limit but is inferior to standard DFT models like
LDA near equilibrium. However, progress in DFT has often
relied on combining or hybridizing asymptotic functionals
coming from different asymptotic regimes, we therefore believe
that for future development of the DFT energy functionals, the
SCE model is a promising ingredient.
The theory of this paper applies to more general systems

with arbitrary numbers of electrons; however, the numerical
algorithms need further development. Specifically, we can
restrict the N-particle density to the ansatz

ρ
ρ

γ γ γ γ=
N

r r
r

r r r r r( , ..., )
( )

( , ) ( , )... ( , )N N N N1
1

2 1 2 3 1 3 1

where ρ is the given single-particle density. Here, γj(r1,rj)
represents the probability of the jth electron being found at rj
while the first electron is located at r1. We have

∫ γ = =


j Nr r r( , ) d 1 2, ...,j j j13

With a given discretization {ek}1≤k≤n and barycenters ak of ek, we
can approximate γj(r1,rj) by a matrix Xj = (xj,kl) ∈ n×n for j =
2,...,N. Then the continuous model eq 5 is reduced to
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(32)

This is a quadratic programming problem of the form

+

= ≥

x Hx f x

Ax b x

min

s. t. and 0
x

T T

k

By solving the above quadratic programming problem, we
approximate the co-motion functions T2,...,TN by the matrices
X2 = (x2,kl),...,XN = (xN,kl). Similar to eq 27, the co-motion
functions can be approximated by

∑≈ = =
≤ ≤

T x k n i Na a( ) 1, ..., , 2, ...,i k
l n

l i kl
1

,

However, a serious difficulty in solving eq 32 stems from the
nonconvexity of the matrix H. Moreover, the symmetry
properties as in Theorem 3 are not clear for systems with
symmetric densities but more than two electrons. We plan to
investigate these issues in future work.

■ APPENDIX

A. Proof of Theorem 2

First, since Vee
SCE[ρ] is easily seen to be convex, it equals its

double Legendre transform. Second, the constraint ρN |→ ρ can
been eliminated from the first Legendre transform:

Figure 4. SCE and LDA electron densities (a) and potentials (b) of H2, plotted along the molecular axis.

Figure 5. Optimal transport mapping of the region 0.04 ≤ ρ(r) ≤ 0.08
(indicated by the blue dots inside the red contours) to the green area,
for the H2 molecule with R = 1. Each blue dot corresponds to one
barycenter in the numerical discretization and has been rotated into
the x−y plane with y ≥ 0 for visual clarity. The green dots are precisely
the images of the blue dots under the optimal transport map.
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This results in the following variational principle introduced in
ref 14:

∫ ∫ ∑ρ ρ ρ= + −
ρ =
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As noted in ref 14, the support of any minimizer ρ̃N of the
inner minimization must be contained in the set of absolute
minimizers of cee(r1,...,rN) − ∑i = 1

N v(ri), yielding

ρ∇ − ∇ = ̃c vr r r( , ..., ) ( ) 0 on supp( )N i Nr ree 1i i (35)

Next, we claim that if v0 is a maximizer of eq 34, then the
corresponding minimizer ρN

0 of the inner optimization of eq 34
is exactly the minimizer of the original problem eq 5. To see
this, use the necessary condition for maximization of v0 that
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(36)

for any v,̃ infer from first order perturbation theory that to first
order the minimum is given by ∫

 N3 (cee −Σi=1
N v0(ri))ρN

0 + ∫
 N3

∑i=1
N v(̃ri)ρN

0 with ρN
0 being the minimizer for ε = 0 and conclude

that ρN
0 automatically has marginal ρ. This yields eq 35 with v

replaced by v0 and ρÑ replaced by ρN
0 .

In order to obtain eq 20, it is now only necessary to show
that uρ(r) = v0(r) + μ for some constant μ. Using that the
maximum value of eq 34 is invariant under changing v by an
additive constant, the maximization over v in eq 34 may be
restricted to v’s with the additional property
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For these v’s, the minimization over ρN in eq 34 can be carried
out explicitly, yielding

∫ρ ρ=
{ }V v v[ ] max , satisfies 37ee

SCE
3 (38)

This maximum value remains unchanged when replacing eq 37
by the inequality constraint in eq 11, which completes the
proof.
B. Proof of Theorem 4
First, we establish an upper bound on ESCE(R). Let
φ π= −r( ) e /r and

ψ φ φ= | − | + | − |⎜ ⎟
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Note that φ is the minimizer of eq 29, and ||φ||
L ( )2 3 = 1 implies

||ψ||
L ( )2 3 = 1, we have
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which together with the fact that
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a direct calculation leads to ESCE(R) ≤ 2e0 + O(R−1).
For the lower bound of ESCE(R), we observe that ESCE(R) ≥

1/2R + 2inf∥ϕ∥L2=1⟨ϕ|h ̂|ϕ⟩, where h ̂ is the H2
+ Hamiltonian ĥ =

−1/2Δ + vext. We claim that

ϕ ϕ ϕ ϕ⟨ | |̂ ⟩ ≥ − ∥ ∥ ∀ ∈− h e O R H( ( )) ( )L0
1 2 1 3

2 (41)

To see this, we first decompose the unity function on  into
two smooth cutoff functions ζ ̃1 and ζ2̃, such that ζ1̃

2 + ζ2̃
2 =1,

ζ ̃1(x) = 0 for x < −1/2, ζ2̃(x) = 0 for x > 1/2, and|∇ζĩ| ≤ C*
with some constant C*. Let

ζ ζ ζ= = ̃ =x y z x R ir( ) ( , , ) ( / ) 1, 2i i i

and ϕi = ζiϕ. Using this relationship, its consequence that
Σi=1
2 |∇ϕi|

2 = Σi=1
2 (|∇ζi|2)|ϕ|2 + |∇ϕ|2, and the fact |∇ζi| ≤ C*/R,

we have
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which implies eq 41. Considering the upper and lower bounds
completes the proof of eq 31.
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