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The topic of this article are transport properties of many-body quantum chains
accompanying DMRG-type simulations of the Bose–Hubbard model. To set the stage, 
we first provide a very brief introduction to many-body quantum theory and tensor 
network approximations. Transport properties are studied via dynamical density correlation 
functions, in line with linear response theory. We observe diffusive behavior at “infinite 
temperature” T → ∞. Finally, we mention other approaches to study transport, e.g., 
explicitly imposing a temperature gradient via thermal reservoirs at the boundary.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Cet article porte sur les propriétés de transport de chaînes quantiques à n corps en 
s’accompagnant de simulations de type « groupe de renormalisation de matrice de densité »
du modèle de Bose–Hubbard. Pour dresser une vue d’ensemble, nous présentons d’abord 
une très brève introduction à la théorie quantique à n corps et aux approximations 
des réseaux de tenseurs. Les propriétés de transport sont étudiées à l’aide de fonctions 
dynamiques de corrélation de densité, en suivant la théorie de la réponse linéaire. 
Nous observons un comportement diffusif à « température infinie » T → ∞. Enfin, nous 
mentionnons d’autres approches permettant d’étudier le transport, par exemple en 
imposant explicitement un gradient de température via des réservoirs thermiques aux 
bords.

© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

This article is concerned with Fourier’s law and transport properties in general for many-body quantum systems. To 
start, one first has to relate the concept of thermal conduction to quantum mechanics. The approach presented here invokes 
linear response theory, i.e. the effect (to lowest order) of a small perturbation on the system initially in thermal equilibrium. 
Concerning transport, the idea is to quantify how a localized perturbation (effected by heating for example) spreads in 

E-mail address: christian.mendl@tu-dresden.de.
https://doi.org/10.1016/j.crhy.2019.08.006
1631-0705/© 2019 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

https://doi.org/10.1016/j.crhy.2019.08.006
http://www.ScienceDirect.com/
http://www.sciencedirect.com
mailto:christian.mendl@tu-dresden.de
https://doi.org/10.1016/j.crhy.2019.08.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.crhy.2019.08.006&domain=pdf


C.B. Mendl / C. R. Physique 20 (2019) 442–448 443
time. After a brief introduction to many-body quantum theory, we will outline and present DMRG-type simulations of the 
quantum Bose–Hubbard model. Alternative approaches to study thermal conduction are reviewed in the final section.

2. Primer of many-body quantum theory

While a comprehensive introduction to quantum mechanics is beyond the scope of the present article (see, for example, 
the textbooks [1–3] for an introduction), we briefly outline the essential ingredients required in the next sections. The 
quantum system at the current time point is described by the so-called quantum wavefunction ψ , which is an element 
of the quantum Hilbert space H [4] corresponding to the physical system of interest. We take this Hilbert space to be 
finite-dimensional here, and imagine that the physical system consists of a finite lattice with L sites formed by, e.g., the 
atoms in an optical lattice or in a solid. Each site j is modeled by a complex d-dimensional vector space V j ; for “qubits” 
d = 2, for example. Then the Hilbert space is the tensor product

H =
L⊗

j=1

V j (1)

The inner product on H is the usual �2 inner product, denoted 〈·|·〉, with the convention that it is linear in its second
argument.

In particular, to represent a general wavefunction ψ ∈ H, one requires dL complex coefficients. Denoting by ei the i-th 
unit vector, i = 1, . . . , d, the canonical orthonormal basis of H may be enumerated as {|i1, . . . , iL〉}d

i1,...,iL=1 with

|i1, . . . , iL〉 = ei1 ⊗ · · · ⊗ eiL (2)

The wavefunction can thus be represented as

ψ =
d∑

i1=1

· · ·
d∑

iL=1

αi1,...,iL |i1, . . . , iL〉 (3)

using complex parameters αi1,...,iL ∈C.
Quantum mechanics associates an average energy with the wavefunction ψ and describes its time evolution via the 

so-called Hamiltonian operator H , i.e. a Hermitian matrix acting on H. Specifically, the average energy is equal to 〈ψ |Hψ〉. 
The time evolution is governed by the famous Schrödinger equation

ih̄∂tψ(t) = Hψ(t) (4)

where i is the imaginary unit and h̄ the reduced Planck constant, leading to the time dependence ψ(t) = e−iHt/h̄ψ(0). The 
time evolution operator e−iHt/h̄ is unitary since H is Hermitian. For notational simplicity, we choose units such that h̄ = 1. 
Note that a time-dependent expression like 〈χ(t)|Aψ(t)〉 (with ψ and χ quantum wavefunctions, and A an arbitrary matrix 
acting on H) can be rewritten as

〈χ(t)|Aψ(t)〉 =
〈
e−iHtχ |Ae−iHtψ

〉
=

〈
χ |eiHt Ae−iHtψ

〉
= 〈χ |A(t)ψ〉 (5)

when using the so-called Heisenberg representation

A(t) = eiHt Ae−iHt (6)

By convention, ψ , χ , and A (without explicit time argument) are understood as initial (t = 0) or stationary states.
We assume that the Hamiltonian H is prescribed and well known. To provide a concrete example, the Hamiltonian of 

the Heisenberg model on a one-dimensional lattice reads

H = 1

2

L∑
j=1

( ∑
α=x,y,z

Jασα
j σα

j+1 + hσ z
j

)
(7)

where Jα and h are real parameters and σα
j is the α-th 2 × 2 Pauli matrix acting on lattice site j. The Pauli matrices are

σ x =
(

0 1
1 0

)
, σ y =

(
0 −i
i 0

)
, σ z =

(
1 0
0 −1

)
(8)

The expression σα
j σα

j+1 is a compact notation for the outer product of 2 × 2 identity operators and the Pauli matrices:

σα
j σα

j+1 = I ⊗ · · · ⊗ I︸ ︷︷ ︸⊗σα ⊗ σα ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸ (9)
j−1 L− j−1
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An important concept required for the following is the thermal Gibbs ensemble average: one imagines that the quantum 
system is in one of a number of states ψn with probability pn . It will be convenient to define a corresponding density matrix
as

ρ =
∑

n

pn |ψn〉〈ψn| (10)

where |ψn〉〈ψn| is the physicists’ notation of the outer product of ψn with itself, i.e. applied to any χ ∈ H: (|ψn〉〈ψn|)χ =
ψn〈ψn|χ 〉. The density matrix of the thermal Gibbs ensemble at temperature T may be defined by letting the ψn ’s be 
the complete basis of eigenstates of H , i.e. Hψn = εnψn for all n = 1, . . . , dim(H) with energy εn ∈ R. The corresponding 
probabilities are chosen as pn = 1

Z e−βεn with inverse temperature β = 1
kB T , kB the Boltzmann constant and the “partition 

function” Z acting as normalization factor. Thus

ρ =
∑

n

1

Z
e−βεn |ψn〉〈ψn| = 1

Z
e−βH , Z = tr

[
e−βH

]
(11)

The expression e−βH is the matrix exponential of the Hamiltonian H multiplied by −β . Accordingly, the thermal Gibbs 
ensemble average of an operator A is defined as

〈A〉eq =
∑

n

1

Z
e−βεn 〈ψn|Aψn〉 = 1

Z
tr

[
e−βH A

]
(12)

For later use, we denote the “connected correlation” (covariance) of two operators A and B as

〈A; B〉eq = 〈AB〉eq − 〈A〉eq〈B〉eq (13)

Fourier’s law of heat conduction can be regarded as a special case of (energy) transport properties in general. Here we 
focus on linear response theory for quantum systems [3] to investigate the question of how a small (local) perturbation of a 
system in thermal equilibrium influences (to lowest order) a measurable operator A at some later time (and potentially at 
some different location), i.e. the spatiotemporal dynamics of the perturbation. Starting from some time t0 , a small pertur-
bation εV (t) with ε � 1 is assumed to act on the system. The perturbation is taken into account as an additional term in 
the Hamiltonian:

H̃(t) = H + εV (t) θ(t − t0) (14)

with the Heaviside step function θ expressing the onset at t0. Note that the time dependence in (14) is the explicit time 
dependence of the perturbation (e.g., a time-varying external field), not the Heisenberg representation in (6). The ensemble 
average of A under the dynamics induced by H̃ now likewise depends on time: starting from Eq. (12) at t0, one obtains

〈A〉t =
∑

n

1

Z
e−βεn 〈ψn(t)|Aψn(t)〉 (15)

where the ψn(t), t ≤ t0, are the eigenstates of H as before, but are subject to time evolution according to the perturbed 
Hamiltonian for t ≥ t0:

i∂tψn(t) = H̃(t)ψn(t) (16)

We keep the definition of 〈·〉eq in (12) independent of the perturbation. Linear response theory and the Kubo formalism [3]
express the deviation of 〈A〉t from 〈A〉eq as

δA(t) := 〈A〉t − 〈A〉eq = −i

t∫
t0

〈[
eiH(t−τ ) Ae−iH(t−τ ), εV (τ )

]〉
eq

dτ +O(ε2) (17)

with [A, B] = AB − B A the commutator of two operators A and B . Thus, we have expressed δA(t) as a time integral over 
the equilibrium correlation between A and the perturbation εV (τ ).

The Kubo formula (17) forms the starting point for the Green–Kubo relations [5,6], which express the conductivity as 
equilibrium-averaged autocorrelation of the current operator.
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3. Tensor network methods

Simulating many-body quantum systems on (classical) computers poses a challenging task due to the inherent “curse 
of dimensionality”. As detailed in the previous section, even storing all dL complex coefficients of the wavefunction is not 
feasible if L exceeds on the order of 30 lattice sites (for d = 2). Thus physically inspired ansatzes and approximations 
are required, and the challenge has spurred the development of several computational approaches [7,8]. For quasi-one-
dimensional lattice systems, the density matrix renormalization group (DMRG) framework [9–11] has emerged as one of 
the most successful methods. Modern formulations are based on tensor networks [12–18], and further developments and 
improvements of associated algorithms remain an active field of research.

While a detailed introduction to tensor network methods is beyond the scope of the present article, the following para-
graphs try to convey the main principles: the central idea is to approximate the quantum wavefunction ψ as a tensor 
network, as illustrated in Fig. 1. On a one-dimensional lattice, this is known as “matrix product state” in the physics com-
munity. More formally, the wavefunction coefficients αi1,...,iL (see Eq. (3) above) are interpreted as tensors of rank L, which 
are approximated as

αi1,...,iL ≈ A(1)
i1

· A(2)
i2

· · · A(L)
iL

(18)

Here A( j)
i ∈ CD j−1×D j is a complex matrix for each i = 1, . . . , d and j = 1, . . . , L, the D j are the so-called virtual bond 

dimensions (with dummy boundary dimensions D0 = D L = 1), and · is the usual matrix–matrix product. Alternatively, 
one may interpret A( j) as a rank-3 tensor in Cd×D j−1×D j . We denote the largest occurring bond dimension by Dmax, i.e. 
Dmax = max{D0, . . . , DL}. Thus the number of parameters on the right-hand side of Eq. (18) scales linearly with system size 
L, if Dmax is bounded independent of L.

How is the approximation (18) justified? This question has been addressed by a large body of research in the physics 
community and is intimately related to physical “entanglement” [19]. In one sentence, the so-called “area law of entangle-
ment” states that, at least for ground-state wavefunctions (lowest energy eigenstates) of Hamiltonians with local interactions 
(and away from a critical point), Dmax can indeed be bounded independent of L. Thus, the tensor network ansatz (18)
achieves a remarkable reduction from O(dL) to O(d D2

max L) coefficients.
Moreover, typical quantum Hamiltonian operators on one-dimensional lattices can be exactly represented in tensor net-

work form [12,20]. This works by the same principle as the MPS ansatz, but using two physical “legs” per lattice site (to 
represent a matrix instead of a vector), see Fig. 2, and is denoted “matrix product operator” (MPO).

Tensor networks with quasi-one-dimensional topology are well suited for efficient numerical manipulation; in particular, 
they can be efficiently contracted. For example, 〈ψ |Hψ〉 can be evaluated numerically exactly via a successive contraction 

Fig. 1. The matrix product state (MPS) tensor network ansatz, shown for L = 5 lattice sites.

Fig. 2. A matrix product operator (MPO), shown for L = 5 lattice sites.

Fig. 3. Graphical representation of the tensor network for computing expectation values like 〈ψ |Hψ〉, with ψ the quantum wavefunction (blue) on a 
one-dimensional lattice and H the Hamiltonian (green). The network can be efficiently contracted from left to right (or right to left), with computational 
effort scaling linearly with system size L.
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from left to right (or right to left), see Fig. 3. In a nutshell, this property explains the numerical efficiency of tensor network 
methods in one dimension. Efficient time evolution methods include Trotter splitting, the “time-evolving block decimation” 
(TEBD), and tangent space methods [12,15,18,21].

4. Diffusive scaling of dynamical correlation functions

As exemplification of transport in quantum systems, we numerically compute dynamical correlation functions using 
the tensor network methods discussed in the previous section. Here we consider the quantum Bose–Hubbard model with 
interaction strength U = 5 on a lattice with L = 100 sites. One expects qualitatively similar results for other (non-integrable) 
models, like the above Heisenberg model. In our case, the local Hilbert space dimension is d = 3 (restricted to a maximal 
occupancy of two particles per site), spanned by basis states corresponding to 0, 1, or 2 particles: {|0〉, |1〉, |2〉}. Instead of 
the Pauli matrices (8), we employ the local “density” (or “number”) operator

n =
⎛
⎝0

1
2

⎞
⎠ (19)

which is simply a diagonal matrix with respect to the basis {|0〉, |1〉, |2〉}.
In line with linear response theory, we investigate dynamical density correlation functions

〈n j(t);n�(0)〉eq (20)

with n j denoting the density operator acting on lattice site j and the usual Heisenberg time dependence (6). For large 
system size L, one expects that finite-size (boundary) effects become negligible, such that the correlation function only 
depends on j − � (and time t) in the thermodynamic limit L → ∞ due to spatial translation invariance. Accordingly, we 
will label the reference site as � = 0. Diffusive behavior of the system is indicated by the correlation function matching the 
kernel of the heat equation, i.e.

〈n j(t);n0(0)〉eq � 1√
4πD t

exp

(
− j2

4D t

)
(21)

with D the diffusion coefficient or conductivity.
The simulation results shown in Fig. 4 have been obtained in the “infinite temperature” limit T → ∞, i.e. setting β = 0. 

Numerical simulation details can be found in [22]. The simulations are repeated for three values of the maximally allowed 
bond dimension Dmax, to ensure that the results are not sensitive to the Dmax cut-off, i.e. to exclude artifacts of the tensor 
network approximation. Indeed, one observes a centered “heat peak” in Fig. 4, which spreads over time. The red dashed 
curve shows a Gaussian heat kernel of the form (21), with fitted diffusion coefficient D = 0.96, and matches the correlation 
function quite well.

As a remark, the dynamical density correlation deviates strongly from a diffusive heat peak at finite temperatures β ≥ 1
(data not shown).

5. Complementary approaches of studying transport

The approach presented here is one of many complementary ways of studying transport in quantum systems. In the 
absence of strong correlation, one typically invokes semiclassical kinetic theory and quantum Boltzmann equations [23–25], 
i.e. describing the collective carrier dynamics via a distribution function depending on single-particle position, momentum, 
and time.

Explicitly imposing temperature gradients can be achieved by introducing thermal reservoirs (“baths”) at the left and 
right boundary of an (one-dimensional) quantum system. This leads to the following Lindblad equation [26] for the density 
matrix, which reads in general form

∂tρ = − i

h̄
[H,ρ] +

N2−1∑
n,m=1

hnm

(
Anρ A†

m − 1

2

{
A†

m An,ρ
})

(22)

Remarkably, explicit expressions for the nonequilibrium steady state (i.e. stationary solutions to the Lindblad equation) have 
been obtained for certain physical systems [27–29].

Especially for quantum systems out of equilibrium, where linear response theory is no longer applicable, insights into 
transport properties have also been gained by invoking the so-called holographic duality [30].
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Fig. 4. Dynamical density correlation functions 〈n j(t); n0(0)〉eq at four time points, for the quantum Bose–Hubbard model with U = 5 and at “infinite 
temperature” (β = 0). The curves for different maximal virtual bond dimensions Dmax overlap (except for (f) and | j| ≥ 10), indicating that the results are 
not significantly altered due to the Dmax cut-off. The tip of the initial correlation peak in (a) is not visible due to the capped plot range. The dashed red 
curve is a Gaussian heat kernel of the form (21) with fitted diffusion coefficient D = 0.96. The two bottom plots show the same data as the middle row, 
but on a logarithmic scale.
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