
Computer Physics Communications 182 (2011) 1327–1337
Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

The FermiFab toolbox for fermionic many-particle quantum systems ✩

Christian B. Mendl

Center for Mathematics M7, TU München, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 August 2010
Received in revised form 16 January 2011
Accepted 24 January 2011
Available online 24 February 2011

Keywords:
Symbolic computation
Many-particle quantum mechanics
Reduced density matrices
Creation/annihilation operators
Slater determinants

This paper introduces the FermiFab toolbox for many-particle quantum systems. It is mainly concerned
with the representation of (symbolic) fermionic wavefunctions and the calculation of corresponding
reduced density matrices (RDMs). The toolbox transparently handles the inherent antisymmetrization
of wavefunctions and incorporates the creation/annihilation formalism. Thus, it aims at providing a solid
base for a broad audience to use fermionic wavefunctions with the same ease as matrices in Matlab,
say. Leveraging symbolic computation, the toolbox can greatly simply tedious pen-and-paper calculations
for concrete quantum mechanical systems, and serves as “sandbox” for theoretical hypothesis testing.
FermiFab (including full source code) is freely available as a plugin for both Matlab and Mathematica.

Program summary

Program title: FermiFab
Catalogue identifier: AEIN_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEIN_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Special license provided by the author
No. of lines in distributed program, including test data, etc.: 1 165 461
No. of bytes in distributed program, including test data, etc.: 15 557 308
Distribution format: tar.gz
Programming language: MATLAB 7.9, Mathematica 7.0, C
Computer: PCs, Sun Solaris workstation
Operating system: Any platform supporting MATLAB or Mathematica; tested with Windows (32 and
64 bit) and Sun Solaris.
RAM: Case dependent
Classification: 4.15
Nature of problem: Representation of fermionic wavefunctions, computation of RDMs (reduced density
matrices) and handing of the creation/annihilation operator formalism.
Solution method: Mapping of Slater determinants to bitfields, implementation of the creation/annihilation
and RDM formalism by bit operations.
Running time: Depends on the problem size; several seconds for the provided demonstration files.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The ground state energy of fermionic many-particle quantum systems can be re-expressed as a linear functional of (one- or two-body)
reduced density matrices (RDMs). This notion traces back to the origins of quantum mechanics [1,2] around 1930. Since 1964, the one-
body RDM has been greatly popularized by density functional theory [3,4], which is typically the most viable approximation for handling
large particle numbers. The tantalizing possibility of employing RDMs (instead of many-particle wavefunctions) for exact groundstate
energy computations is counterbalanced by the N-representability problem, i.e., the search for necessary and sufficient conditions a two-
body density must obey to represent an N-electron wavefunction [5–7]. Modern applications use variational principles and semidefinite

✩ This paper and its associated computer program are available via the Computer Physics Communications homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).

E-mail address: christian_mendl@hotmail.com.
0010-4655/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.cpc.2011.01.028

http://dx.doi.org/10.1016/j.cpc.2011.01.028
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AEIN_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:christian_mendl@hotmail.com
http://dx.doi.org/10.1016/j.cpc.2011.01.028


1328 C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337
Fig. 1. Schematic illustration of a Slater determinant: (filled) circles correspond to (occupied) orbitals.

programming to impose positivity constraints on the two-body RDM [8]. In any case, it is desirable to render the powerful RDM framework
accessible to a broader audience, integrating it into the symbolic language of modern computer algebra systems like Mathematica, or
numeric software like Matlab.

The FermiFab toolbox (available for download at [9]) is precisely designed for that purpose. A short “usage manual” and a brief tour
of the essential features are provided in the following subsections. Note that the underlying one-particle orbitals (see below) are always
assumed to be orthonormalized. In addition, the toolbox adheres to the trace-normalization convention tr∧p H γ|ψ〉〈ψ | = (N

p

)
for the p-body

RDM γ|ψ〉〈ψ | of a normalized N-body wavefunction ψ . Here,
∧p H denotes the p-particle Fock-space (see following subsection).

1.1. Fermi states

Fundamental building blocks of multi-fermion quantum systems are Slater determinants (Fig. 1). These can be thought of as a collection
of “orbitals” (or slots), some of which are occupied by a fermionic particle (e.g., an electron). In mathematical terms, the available number
of orbitals ‘orbs’ is the dimension of the underlying one-particle Hilbert space H and the number of occupied orbitals the particle
number N . Thus there are altogether

(orbs
N

)
Slater determinants. Their complex span defines the N-particle Fock-space

∧N H. The N-

particle Fermi states are precisely the elements of
∧N H.

1.2. Getting started with FermiFab

For concreteness, the following examples are issued in the Matlab programming language. (The Mathematica version of FermiFab
provides the same features; Section 3 contains a demonstration.) Commands typed by the user are preceded by >>, and the subse-
quent lines show the corresponding output. In standard Matlab syntax, zeros(n,1) below constructs a column vector of length n, and
nchoosek computes binomial coefficients. We first show how to represent an N = 4 particle state ψ with, e.g., 6 available orbitals in
total:

>> orbs = 6; N = 4;
>> x = zeros(nchoosek(orbs,N),1); x(1)=1/sqrt(2); x(2)=1i/sqrt(2);
>> psi = fermistate(orbs,N,x)

psi =
Fermi State (orbs == 6, N == 4)
(0.70711)|1234> + (0+0.70711i)|1235>

Needless to say, the fermistate command is specific to the FermiFab toolbox. The vector x contains the Slater determinant coefficients
of ψ in lexicographical order. Let’s assign more meaningful names to the orbitals of ψ :

>> psi = set(psi,’orbnames’,{’1s’ ’1s~’ ’2s’ ’2s~’ ’2p’ ’2p~’})

psi =
Fermi State (orbs == 6, N == 4)
(0.70711)|1s 1s~ 2s 2s~> + (0+0.70711i)|1s 1s~ 2s 2p>

From a physics viewpoint, these orbitals could form electronic subshells in atoms. The rank-one projector |ψ〉〈ψ | or “density matrix” of ψ

can be calculated intuitively by

>> psi*psi’

ans =
Fermi Operator wedge^4 H -> wedge^4 H (orbs == 6)

Matrix representation w.r.t. ordered Slater basis
(|1s 1s~ 2s 2s~>, |1s 1s~ 2s 2p>, ... |2s 2s~ 2p 2p~>) ->

(|1s 1s~ 2s 2s~>, |1s 1s~ 2s 2p>, ... |2s 2s~ 2p 2p~>):

Columns 1 through 4

0.5000 0 - 0.5000i 0 0
0 + 0.5000i 0.5000 0 0

...

Note that the result is now a fermiop operator acting on
∧4 H.



C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337 1329
1.3. Reduced density matrices

The core feature of the toolbox is the efficient calculation of RDMs. For example, the 2-body RDM

〈i j|γ|ψ〉〈ψ |kl〉 := 〈ψ |a†
ka†

l a jai|ψ〉
can be obtained by

>> rdm(psi,2)

ans =
Fermi Operator wedge^2 H -> wedge^2 H (orbs == 6)

Matrix representation w.r.t. ordered Slater basis
(|1s 1s~>, |1s 2s>, ... |2p 2p~>) -> (|1s 1s~>, |1s 2s>, ... |2p 2p~>):

Columns 1 through 4

1.0000 0 0 0
0 1.0000 0 0
0 0 0.5000 0 - 0.5000i
0 0 0 + 0.5000i 0.5000

...

RDMs are reviewed in more detail in Section 2.3.

1.4. Tensor products of operators

Given a linear operator A : H → H, a straightforward derivation based on the antisymmetrized structure of
∧N H shows that

〈 j1, . . . , jN |(A ⊗ · · · ⊗ A)|i1, . . . , iN 〉 = det〈 jk|A|i�〉k,�

for all 1 � i1 < · · · < iN � dim H and 1 � j1 < · · · < jN � dim H. That is, we obtain a matrix representation of A ⊗· · ·⊗ A acting on
∧N H.

The tensor_op command implements precisely this operation. The following code lines are taken from the “natural orbitals” example
in test/norbs.m:

>> orbs = 6; N = 4;
>> psi = fermistate(orbs,N,crand(nchoosek(orbs,N),1));
>> [U,D] = eig(rdm(psi,1));

crand generates pseudorandom complex numbers (similar to rand), and eig computes eigenvalues and -vectors. Thus, the eigenvectors
of the 1-body RDM of ψ are stored in U . Performing a corresponding base change on

∧N H using these eigenvectors should result in a
diagonal 1-body RDM [5]:

>> psi = tensor_op(U,N)’*psi;
>> G = get(rdm(psi,1),’data’);
>> err = norm(G-diag(diag(G)))

err =

1.6512e-015

In many physical applications, one can take advantage of unitary base changes on H such that subsequent computations are simplified,
e.g., by choosing single-particle eigenstates of the Lz angular momentum operator. The above code shows how to implement the according
base change on

∧N H.

1.5. State configurations

For performance and memory efficiency reasons, FermiFab has built-in “configurations”, i.e., we can subdivide the available orbitals
into several groups, each of which contains a fixed number of particles. (Physically speaking, the groups could be interpreted as atomic
subshells 1s, 2s, 2p, 3s, for example.) Let’s say our system involves a total of 3 particles in 9 orbitals, with exactly 2 particles in the first
5 orbitals and 1 particle in the remaining 4 orbitals. Then a fermistate reflecting this configuration is specified by

>> orbs = [5,4]; N = [2,1];
>> psi = fermistate(orbs,N)



1330 C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337
psi =
Fermi State (orbs == 9, N == 3)
|126>

Note that |126〉 is the lexicographically first base vector respecting the configuration constraints, and that ψ requires only
(5

2

) · (4
1

) = 40

rather than
(9

3

) = 84 complex entries:

>> length(psi)

ans =

40

The rdm command works transparently for any configuration, so ψ behaves like a standard 9-orbital, 3-particle state.
What happens if we add two fermistates with different but compatible configurations (i.e., the total number of orbitals and particles

is the same)?

>> orbs = [2,7]; N = [1,2];
>> phi = fermistate(orbs,N)

phi =
Fermi State (orbs == 9, N == 3)
|134>

>> length(phi)

ans =

42

>> chi = psi+phi

chi =
Fermi State (orbs == 9, N == 3)
|126> + |134>

as expected – so how is this accomplished? FermiFab has detected that it needs to combine the two configurations, resulting in the
full-fledged 9-orbital, 3-particle state. This fact can be checked by

>> length(chi)

ans =

84

1.6. Symbolic computations

The Mathematica version of FermiFab is – quite naturally – inherently based on symbolic language. Considering Matlab, the (op-
tionally available) Symbolic Math Toolbox integrates seamlessly into FermiFab, too. Taking advantage of symbolic computations is thus
easily accomplished. That is, in the above examples, we may as well insert symbolic variables:

>> syms a b c
>> y = sym(zeros(1,nchoosek(orbs,N)));
>> y(1) = a; y(3) = 1i*b^2; y(4) = 1/c;
>> psi = set(psi,’data’,y)

psi =
Fermi State (orbs == 6, N == 4)
(a)|1s 1s~ 2s 2s~> + (b^2*i)|1s 1s~ 2s 2p~> + (1/c)|1s 1s~ 2s~ 2p>

>> rdm(psi,2)

ans =
Fermi Operator wedge^2 H -> wedge^2 H (orbs == 6)



C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337 1331
Algorithm 1 NextFermi
Input: s: bitfield
1: t ⇐ (s ∨ (s − 1)) + 1
2: return t ∨ (((LastBit(t) − 1)/LastBit(s)) � 1)

Matrix representation w.r.t. ordered Slater basis
(|12>, |13>, ... |56>) -> (|12>, |13>, ... |56>):

[ (c*b^2*conj(b)^2 + a*c*conj(a))/c + 1/(c*conj(c)),
...

2. Implementation details

The algorithmic implementation is based on the canonical mapping from Slater determinants to bitfields. That is, each Slater de-
terminant corresponds to an unsigned integer s, where the ith bit is set to 1 precisely when the ith orbital is occupied. To remain
unambiguous in terms of bitlength, the first orbital is stored in the LSB (least significant bit). Now, our task consists of re-expressing the
creation/annihilation and RDM formalism in terms of bit operations. Note that, for example, testing whether all occupied orbitals in s1 are
also occupied in s2 amounts to the pretty simple line of code s1 ∧ s2 = s1, where we have used the bitwise AND operator ∧. The following
table summarizes all required bit operations:

bitwise AND: x ∧ y
bitwise OR: x ∨ y
bitwise XOR: x ⊕ y
bit shift left: x � n
bit shift right: x � n
bit count: #(x)

For example, 10011012 � 3 = 10012 and #(18) = #(100102) = 2. Note that bit operations are typically very “cheap” on CPUs. (In particu-
lar, refer to the SSE4 [10] POPCNT “population count” instruction for bit counting.) Diving a little bit further down into CPU intrinsics, we
will make use of two’s-complement arithmetic for negating numbers [11], e.g.,

x = · · · 0010111002 �
−x = · · · 1101001002. (1)

Interestingly, precisely all bits flip which are more significant than the least significant 1-bit (marked in bold). Thus, we can use this
property to extract the last 1-bit from a bitfield x �= 0 simply by

LastBit(x) := x ∧ (−x).

(An less universal alternative is the BSF “bit scan forward” instruction [12], which returns the index of the least significant 1-bit.)

2.1. Enumerating Slater determinants

The basic task we set out to accomplish in this subsection is lexicographically enumerating all Slater determinants of a fixed particle
number N and number of orbitals ‘orbs’. This amounts to computing the lexicographically next bit permutation (denoted by ‘NextFermi’).
For example,

s = 011110002 �
NextFermi(s) = 100001112.

Closer inspection reveals the general rule that the leading 1-bit (marked in bold) in the least significant block of 1s gets shifted to the left
by one position, and the remaining 1-bits are shifted to the end. Algorithm 1 is adopted from [13] and performs exactly this computation.
In line 1, s ∨ (s − 1) sets the trailing zeros in s to 1, so for example, s = 011110002 � s ∨ (s − 1) = 011111112 and t = 100000002. The
second term in line 2 performs the shifting of the remaining 1-bits to the end.

As an extension of Algorithm 1, we want to take into account “configurations”, i.e., a subdivision of the available orbitals into several
groups, each of which contains a fixed number of particles. For example, we compartmentalize a total of 11 orbitals such that exactly
4 particles are in the first 6 orbitals and 2 in the remaining 5 orbitals, written as (orbs1,orbs2) = (6,5) and (N1, N2) = (4,2). Then a
sequence of patterns – respecting the configuration restrictions – would be

0|01010|1101102,

0|01010|1110012,

0|01010|1110102,

0|01010|1111002,

0|01100|0011112, (2)

where we have highlighted the currently changing 1-bits in bold.



1332 C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337
Algorithm 2 NextFermiConfig
Input: s: bitfield, orbs: int array

1: mask ⇐ (1 � orbs[0]) − 1
2: if (((s ∨ (s − 1)) ∧ mask) �= mask) then
3: return NextFermi(s)
4: else
5: if orbs.length = 1 then
6: return −1
7: end if
8: t ⇐ NextFermiConfig(s � orbs[0],orbs[1, . . . ,end])
9: if t = −1 then

10: return −1
11: end if
12: return (mask/LastBit(s)) ∨ (t � orbs[0])
13: end if

Fig. 2. Annihilation of a single orbital (red). Figuratively, the red orbital moves to the front before being removed, such that each flip (curved arrows) with an occupied
preceding orbital contributes a sign factor of (−1). In terms of quantum mechanics, a|6〉|24568〉 = −|2458〉. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

More formally, given (orbs1, . . . ,orbsk), the compartmentalization may be written as V j := span{|i〉: b j−1 < i � b j} ⊂ H with b j :=∑ j
�=1 orbs� . In other words, H = ⊕

j V j . In the example above, V 1 = span{|1〉, . . . , |6〉} and V 2 = span{|7〉, . . . , |11〉}. Now, mathematically

speaking, a configuration of an N-particle state is a subspace of
∧N H of the following form:

C N1,...,Nk := span
{|i1, . . . , iN〉: �

{
�: |i�〉 ∈ V j

} = N j
}

(3)

where (N1, . . . , Nk) is a partition of N (i.e. 0 � N j � orbs j ,
∑

j N j = N). A quantum chemist could interpret the V j as atomic subshells
1s,2s,2p,3s, . . . and the N j as occupation numbers. An interesting consequence of definition (3) is the recovery of a tensor product
structure, namely

C N1,...,Nk ∼=
k⊗

j=1

∧N j
V j . (4)

This follows from the observation that a configuration is constructed by the lexicographical enumeration of Slater determinants within
orbital groups, as illustrated in (2).

Algorithm 2 implements precisely this enumeration. In accordance with the lexicographical scheme, it first iterates through all Slater
determinants within the least significant orbital group (line 3), then resets this group (first term in line 12) and recursively computes the
next bit pattern for the remaining groups (line 8). The mask in line 1 is required for testing whether the last bit permutation within the
least significant group has been reached (line 2). In the example above, we would have mask = 0|1111112.

2.2. Creation/annihilation operators

The creation/annihilation operator formalism is an essential ingredient of many-particle quantum mechanics and quantum field theory
[14]. For a very brief sketch, let ϕ ∈ ∧p H be a p-particle wavefunction with 1 � p � N . Then, the linear annihilation operator aϕ acting
on

∧N H removes or “annihilates” the state ϕ from
∧N H. More precisely, aϕ is uniquely determined by its antilinearity in ϕ ,

acϕ1+ϕ2 = caϕ1 + aϕ2 ∀c ∈ C, ϕ1,ϕ2 ∈
∧p

H

together with the decomposition for Slater determinants,

a|i1,i2,...,ip〉 := a|ip〉 · · ·a|i2〉a|i1〉 ∀1 � i1 < · · · < ip � dim H,

as well as the definition

a|i〉| j1, . . . , jN〉 :=
{

(−1)k−1| j1, . . . , jk−1, jk+1, . . . , jN〉, i = jk,

0, i /∈ { j1, . . . , jN},
for all 1 � j1 < · · · < jN � dim H. The sign factor can be interpreted as number of orbital “flips” illustrated in Fig. 2.

So far we have considered annihilation operators only. The creation operator a†
ϕ is by definition the adjoint (conjugate transpose) of aϕ ,

as the notation already suggests. It can be shown that the following relations hold, where the anticommutator bracket is defined by
{A, B} := AB − B A and ϕ,χ ∈ ∧p H are arbitrary wavefunctions:

{aϕ,aχ } = 0,
{

a†
ϕ,a†

χ

} = 0,
{

aϕ,a†
χ

} = 〈ϕ|χ〉.



C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337 1333
Algorithm 3 AnnihilSignMask
Input: s: bitfield
1: bitfield m ⇐ 0
2: while s �= 0 do
3: t ⇐ LastBit(s)
4: m ⇐ m ⊕ (−t)
5: s ⇐ s − t
6: end while
7: return m

In the remainder of this subsection, we want to detail an efficient algorithmic implementation of the annihilation operation, w.l.o.g.
for Slater determinants only. More precisely, let |s〉 ∈ ∧N H be a fixed Slater determinant, then our task is the calculation of a|t〉|s〉 for
arbitrary Slater determinants |t〉 ∈ ∧p H and 1 � p � N . The result will be nonzero only if all occupied orbitals in t are also occupied
in s, which can be tested by t ∧ s = t as already mentioned in the beginning. Given this holds true, the bit pattern describing the Slater
determinant a|t〉|s〉 is simply s − t , so what essentially remains is the calculation of the sign factor.

For that purpose, we define the annihilation sign mask of s such that each bit stores the integer parity of the number of less or equal
significant 1-bits in s. That is, if s has binary representation

s = . . .a2a1a0, ai ∈ {0,1}, then

AnnihilSignMask(s) := . . .b2b1b0 with bi ≡
i∑

j=0

a j mod 2.

For example, s = 7
0

6
0

5
1

4
0

3
1

2
1

1
0

0
02 results in AnnihilSignMask(s) = . . .

7
1

6
1

5
1

4
0

3
0

2
1

1
0

0
02 where overhead numbers label bit positions. Algorithm 3

implements this calculation. It has a running time of O(#(s)) since the last statement (line 5) in the while loop removes the least
significant 1-bit from s. In line 4, the ⊕(−t) operation flips all bits which are less or equal significant than the current least significant
1-bit.

Finally, we define the reverse permutation sign σrevperm(n) for all n ∈ N�1 by the sign of the permutation i �→ n − i + 1 (i = 1, . . . ,n).
A moment’s thought reveals that

σrevperm(n) = (−1)
1
2 (n−1)n.

Altogether, our devised algorithm is illustrated in Fig. 3. More formally, we obtain a|t〉|s〉 = ζ · |s − t〉 with the sign factor ζ equal to

ζ = σrevperm
(
#(t)

) · (−1)#(amask∧t), (5)

where we have set amask := AnnihilSignMask(s) � 1. Eq. (5) will be the basic building block for calculating reduced density matrices in
Algorithm 4 below, as described in the next subsection.

2.3. Reduced density matrices

In this subsection we briefly recall the relevant abstract formalism, and then describe the algorithmic implementation in the FermiFab
toolbox. Let 1 � pk � Nk (k = 1,2) and denote orthonormal basis sets of

∧pk H by (ϕki)i . For wavefunctions ψk ∈ ∧Nk H (k = 1,2), define
the reduced density matrix γ|ψ1〉〈ψ2| : ∧p2 H → ∧p1 H by

〈ϕ1 j|γ|ψ1〉〈ψ2||ϕ2i〉 := 〈
ψ2

∣∣a†
ϕ2i aϕ1 j ψ1

〉 = 〈aϕ2i ψ2|aϕ1 j ψ1〉 ∀i, j, (6)

where we have employed the creation/annihilation operators defined in the last subsection. The significance of this definition can be seen
as follows. Any linear map b : ∧p1 H → ∧p2 H with matrix representation (bij) may be “lifted” to an operator B : ∧N1 H → ∧N2 H by

B :=
∑
i, j

bi ja
†
ϕ2i aϕ1 j . (7)

(A prominent example is the Coulomb operator (p1 = p2 = 2), which describes the pairwise interaction between charged particles.) Now,
the B expectation value with respect to |ψ1〉〈ψ2| equals

〈ψ2|Bψ1〉 def=
∑
i, j

bi j
〈
ψ2

∣∣a†
ϕ2i aϕ1 j ψ1

〉 = tr∧p2 H(bγ|ψ1〉〈ψ2|). (8)

In other words, this equation switches from
∧Nk H to

∧pk H (k = 1,2). For many applications, this is the only possibility to avoid the
“curse of dimensionality” induced by the N1, N2-particle systems. In terms of FermiFab, (7) is implemented by the p2N command.

In the rest of this subsection, we focus on the calculation of γ|ψ1〉〈ψ2| in Algorithm 4. Due to linearity, it suffices to restrict ourselves
to Slater determinants. That is, ψ1 and ψ2 are (w.l.o.g.) replaced by Slater determinants s1 and s2, respectively, and it is assumed that the
(ϕki) are Slater determinants, too. So the last term in (6) can be concisely written as 〈at2 s2 |at1 s1〉 with Slater determinants tk ∈ ∧pk H
(k = 1,2). Note that the particle number conservation law imposes N1 − p1 = N2 − p2, otherwise all terms will be zero; so we calculate
p2 from given N1, N2 and p1.

The basic algorithmic idea is exemplified in Fig. 4. Namely, we subsume all orbitals occupied either in s1 or s2, but not in both, as
“force” group, and all orbitals occupied in both s1 and s2 as “choice” group. The corresponding bit patterns fmask and cmask are computed
in lines 1 and 13 of Algorithm 4 by a single bit operation. Since 〈at2 s2 |at1 s1〉 is nonzero only if at1 s1 = ±at2 s2, all occupied “force” orbitals



1334 C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337
Fig. 3. The cumulative sign factors incurred during rearrangement of the to-be annihilated (red) orbitals to the front. In terms of quantum mechanics, the corresponding
operation reads a|458〉|24568〉 = |26〉. The contribution from all flips (curved arrows) during each step can be obtained from the marked bit in amask. Note that this mask
needs to be calculated only once. The permutation sign for sorting the three red orbitals in the last step equals σrevperm(3) = −1, so the overall sign factor is 1. Algorithmically,
the whole schematic is implemented by Eq. (5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Algorithm 4 SlaterRDM
Input: s1, s2: bitfield, p1: int

1: fmask ⇐ s1 ⊕ s2 // “force” mask
2: sforce,k ⇐ ( fmask ∧ sk) (k = 1,2)
3: nchoice,1 ⇐ p1 − #(sforce,1)

4: if nchoice,1 < 0 then
5: return 0
6: end if
7: p2 ⇐ #(s2) − #(s1) + p1

8: amask,k ⇐ AnnihilSignMask(sk) � 1, k = 1,2

9: ζ ⇐ ∏2
k=1 σrevperm(pk) · (−1)#(amask,k∧sforce,k) // sign factor

10: if nchoice,1 = 0 then
11: return ζ · |sforce,1〉〈sforce,2|
12: end if
13: cmask ⇐ s1 ∧ s2 // “choice” mask
14: kchoice ⇐ #(cmask)

15: r ⇐ {}
16: t ⇐ (1 � nchoice,1) − 1
17: while (t � kchoice) = 0 do // iterate Fermi map of ‘choice’ orbitals
18: schoice ⇐ BitDistribute(t, cmask)

19: append r ⇐ ζ · ∏2
k=1(−1)#(amask,k∧schoice)|sforce,1 + schoice〉〈sforce,2 + schoice|

20: t ⇐ NextFermi(t)
21: end while
22: return r

have to be annihilated by at1 and at2 , respectively. On the other hand, each “choice” orbital annihilated by at1 must also be annihilated by
at2 and vice versa, but there’s a freedom in exactly which of these orbitals to select, hence the “choice” designator. In our example, the
only force orbital occupied in s1 is 7, so t1 must contain 7 but may “choose” between 5, 6 and 9. If p1 = 3, we obtain t1 equal to one
of |5 6 7〉, |5 7 9〉 or |6 7 9〉. The respective t2 states are then |1 2 4 5 6〉, |1 2 4 5 9〉 and |1 2 4 6 9〉. After the obligatory annihilation sign factor
calculations (5), the final result (for p1 = 3) is

γ|5 6 7 9〉〈1 2 4 5 6 9| = |5 6 7〉〈1 2 4 5 6| − |5 7 9
〉〈

1 2 4 5 9| − ∣∣6 7 9
〉〈1 2 4 6 9

∣∣.



C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337 1335
Fig. 4. Alignment of two Slater determinants for the annihilation operation. “Force” labels the orbitals which are either occupied in s1 or s2, but not in both, whereas “choice”
labels all orbitals occupied in s1 as well as s2.

Fig. 5. Bit-encoding of a bosonic state. Blue numbers label modes, and 0-bits serve as delimiters between modes. The shown state consists of one boson in the 1st mode, two
in the 2nd mode, zero in the 3rd and three in the 4th. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Algorithm 4 implements Eq. (5) in line 9 and the first term of line 19. sforce,k stores the orbitals which must be annihilated in sk
(k = 1,2), and the number of to-be annihilated “choice” orbitals in s1 is computed in line 3. The while loop accumulates the return value
list r containing the ket-bra’s as in the above example. In line 18, the algorithm uses the ’BitDistribute’ command, which basically just
shifts bits to the positions designated by the 1-bits in cmask.

2.4. Bosons

As a short outlook, we want to illustrate how the developed methods can easily be adapted to bosonic systems as well. In quantum
mechanics, bosons are subatomic particles which obey Bose–Einstein statistics, like, for example, photons. For our purposes, we replace
fermionic “orbitals” by bosonic “modes”, which can be multiply occupied (i.e., the Pauli exclusion principle no longer holds for bosons).
That is, the bosonic analogue of a fermionic Slater determinant differs only by the unrestricted number of particles in each mode. The
central observation of this subsection states that a bit-encoding (equivalent to Slater determinants) works for bosons as well. The idea
is detailed in Fig. 5, where 0-bits serve as delimiters between modes. Lexicographical enumeration of bosonic states with a fixed total
particle number N and number of modes m is accomplished via enumeration of the bit-encoded Slater determinants with (m + N − 1)

orbitals and N particles! That is, Algorithm 1 may be employed without modifications.

3. Application to transition metal atoms

The application example is based on the series [15–17], in which [17] makes use of the FermiFab toolbox to calculate ground
state approximations for transition metal atoms (employing the so-called configuration-interaction (CI) methods). The underlying quantum
mechanical (non-relativistic, Born–Oppenheimer) Hamiltonian H = H0 + V ee with

H0 =
N∑

i=1

(
−1

2

xi − Z

|xi|
)

, V ee =
∑

1�i< j�N

1

|xi − x j|
governs atoms/ions with N electrons and nuclear charge Z . The two terms in H0 are the single-particle kinetic energy and nuclear poten-
tial, respectively, whereas the Coulomb operator V ee describes the pairwise inter-electron Coulomb repulsion. The Hamiltonian leaves
the simultaneous eigenspaces of the well-known angular momentum, spin and parity (‘LS’) operators invariant, so calculating these
eigenspaces first leads to a huge dimension reduction. Specifically, the FermiFab toolbox automates the LS-eigenspace computation
by combining configurations (4) with Clebsch–Gordan coefficients. We skip further details here; instead, for the purpose of this section,
we provide two orthonormal LS-eigenstates of neutral Chromium (N = Z = 24) with symmetry level 5 D:

ψ1 := 1√
10

(|3d0 3dm 3dx 4s 4s 4dx〉 − |3d0 3dm 3dy 4s 4s 4dy〉 − |3d0 3dz 3dx 4s 4s 4dy〉

− |3d0 3dz 3dy 4s 4s 4dx〉 + √
3|3dz 3dm 3dx 4s 4s 4dy〉 − √

3|3dz 3dm 3dy 4s 4s 4dx〉
)

and

ψ2 := 1√
21

(
−√

3/2|3d0 4s 4s 4pz 4px 4dy〉 − √
3/2|3d0 4s 4s 4pz 4p y 4dx〉

+ 2|3dm 4s 4s 4px 4p y 4dz〉 + 1

2
|3dm 4s 4s 4pz 4px 4dy〉 − 1

2
|3dm 4s 4s 4pz 4p y 4dx〉

+ 1 |3dx 4s 4s 4px 4p y 4dy〉 + |3dx 4s 4s 4pz 4px 4dz〉 + √
3|3dx 4s 4s 4pz 4p y 4d0〉
2



1336 C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337
−|3dx 4s 4s 4pz 4p y 4dm〉 − 1

2
|3dy 4s 4s 4px 4p y 4dx〉 + √

3|3dy 4s 4s 4pz 4px 4d0〉
+ |3dy 4s 4s 4pz 4px 4dm〉 + |3dy 4s 4s 4pz 4p y 4dz〉 − 2|3dz 4s 4s 4px 4p y 4dm〉
+ 1

2
|3dz 4s 4s 4pz 4px 4dx〉 + 1

2
|3dz 4s 4s 4pz 4p y 4dy〉

)
.

In this notation, · means spin down ↓, otherwise up ↑, and the s, p,d subshell orbitals are labeled s, pz px p y and d0 dz dm dx dy ,
respectively. The numbers 3 and 4 denote the third and fourth shell. Since all spin-orbitals up to 3p are fully occupied, they are not
shown here for conciseness of notation.

The following paragraph demonstrates how to translate the expectation value 〈ψ2|V eeψ1〉 into a list of Coulomb integral symbols

(ab|cd) :=
∫

R6

a∗(x1)b(x1)
1

|x1 − x2| c∗(x2)d(x2)dx1 dx2, (9)

where a,b, c,d ∈ L2(R3) are spatial orbitals and ∗ denotes complex conjugation. As shown in (8), the essential step is the calculation of
the 2-body reduced density matrix γ|ψ1〉〈ψ2| . Using the Mathematica version of FermiFab, this is accomplished by the first line of the
following code sample (see mathematica/RDMdemo.nb); the subsequent code just displays the result:

The FermiToCoords command converts any bit-encoded Slater determinant to a vector of integers enumerating the occupied orbitals.
Since the Coulomb operator is independent of spin, we may effectively “trace out” the spin coordinate from the employed spin-orbitals.

Specifically, consider single-particle wavefunctions

χi(x, s) = ϕi(x)αi(s), x ∈ R
3, s ∈ {↑,↓}, i = 1, . . . ,4

which factor into the spatial part ϕi and spin part αi . Endowing particle i with coordinates (xi, si), the antisymmetrized 2-body Slater
determinants read

|χiχ j〉 ≡ 1√
2

(
ϕi(x1)αi(s1)ϕ j(x2)α j(s2) − ϕ j(x1)α j(s1)ϕi(x2)αi(s2)

)
.

Plugged into the following equation for the Coulomb expectation value yields〈
χ1 χ2 | 1

|x1 − x2|χ3 χ4

〉
= (ϕ1ϕ3|ϕ2ϕ4)〈α1|α3〉〈α2|α4〉 − (ϕ1ϕ4|ϕ2ϕ3)〈α1|α4〉〈α2|α3〉.

Translating this equation to alternating spin up ↑ and down ↓ orbitals (and taking symmetries of (ab | cd) into account) is accomplished
by the SpinTraceCoulomb command in the first line of the following code sample:

Note that spatial orbitals can appear twice within a Coulomb integral symbol, e.g., (aa|bc). Thus, a bosonic encoding of these spatial
orbitals is used to accommodate multiple occurrences, and hence the BosonToCoords command.

Concluding, we have obtained the desired list of Coulomb integral symbols, which may then be evaluated by inserting concrete func-
tions into (9).



C.B. Mendl / Computer Physics Communications 182 (2011) 1327–1337 1337
Acknowledgements

I’d like to thank Gero Friesecke and Ben Goddard for many helpful discussions and feedback during the last two years. The toolbox
inception was in spring 2008 for automating the (somewhat tedious) pen-and-paper calculations in [15,16]. These papers are concerned
with the Schrödinger equation for atoms and ions from N = 1 to 10 electrons. Specifically, [15,16] exploit the angular momentum, spin
and parity symmetries of atoms to escape the prohibitively large dimensions incurred by quantum mechanical many-particle systems.
Yet, application to atoms with even higher electron numbers (∼ 30) requires symbolic computer algebra. In [17], we specifically treat 3d
transition metal atoms and use some algorithmic improvements incorporated into the FermiFab toolbox.

References

[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Springer, 1932.
[2] P. Dirac, Note on exchange phenomena in the Thomas atom, Mathematical Proceedings of the Cambridge Philosophical Society 26 (1930) 376–385.
[3] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical Review 136 (1964) 864–871.
[4] W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects, Physical Review 140 (4A) (1965) 1133–1138.
[5] P.-O. Loewdin, Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in

the method of configurational interaction, Physical Review 97 (6) (1955) 1474–1489.
[6] A.J. Coleman, Structure of Fermion density matrices, Reviews of Modern Physics 35 (3) (1963) 668–686.
[7] T. Ando, Properties of Fermion density matrices, Reviews of Modern Physics 35 (3) (1963) 690–702.
[8] D.A. Mazziotti, Reduced-Density-Matrix Mechanics: With Application to Many-Electron Atoms and Molecules, Advances in Chemical Physics, vol. 134, Wiley, 2007.
[9] C.B. Mendl, FermiFab project at SourceForge, URL http://sourceforge.net/projects/fermifab, 2010.

[10] Intel, Intel SSE4 Programming Reference, URL software.intel.com, 2007.
[11] Intel, Intel 64 and IA-32 Architectures Software Developers Manuals: Basic Architecture, URL http://developer.intel.com/products/processor/manuals/index.htm, 2010.
[12] Intel, Intel 64 and IA-32 Architectures Software Developer’s Manuals: Instruction Set Reference, URL http://developer.intel.com/products/processor/manuals/index.htm,

2010.
[13] S.E. Anderson, Bit Twiddling Hacks, URL http://graphics.stanford.edu/~seander/bithacks.html.
[14] M.E. Peskin, D.V. Schroeder, An Introduction To Quantum Field Theory, Frontiers in Physics, Westview Press, 1995.
[15] G. Friesecke, B.D. Goddard, Explicit large nuclear charge limit of electronic ground states for Li, Be, B, C, N, O, F, Ne and basic aspects of the periodic table, SIAM Journal

on Mathematical Analysis 41 (2) (2009) 631–664, doi:10.1137/080729050.
[16] G. Friesecke, B.D. Goddard, Asymptotics-based CI models for atoms: properties, exact solution of a minimal model for Li to Ne, and application to atomic spectra, SIAM

Multiscale Modeling and Simulation 7 (4) (2009) 1876–1897, doi:10.1137/080736648.
[17] C.B. Mendl, G. Friesecke, Efficient algorithm for asymptotics-based configuration-interaction methods and electronic structure of transition metal atoms, Journal of

Chemical Physics 133 (2010) 184101.

http://sourceforge.net/projects/fermifab
http://software.intel.com
http://developer.intel.com/products/processor/manuals/index.htm
http://developer.intel.com/products/processor/manuals/index.htm
http://graphics.stanford.edu/~seander/bithacks.html
http://dx.doi.org/10.1137/080729050
http://dx.doi.org/10.1137/080736648

	The FermiFab toolbox for fermionic many-particle quantum systems
	Introduction
	Fermi states
	Getting started with FermiFab
	Reduced density matrices
	Tensor products of operators
	State conﬁgurations
	Symbolic computations

	Implementation details
	Enumerating Slater determinants
	Creation/annihilation operators
	Reduced density matrices
	Bosons

	Application to transition metal atoms
	Acknowledgements
	References


