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We numerically solve semiclassical kinetic equations and compute the growth rate of the Dyakonov-

Shur instability of a two-dimensional Fermi liquid in a finite length cavity. When electron-electron

scattering is fast, we observe the well-understood hydrodynamic instability and its disappearance due

to viscous dissipation. When electron-electron scattering is negligible, we find that the instability

re-emerges for certain boundary conditions but not for others. We discuss the implications of these

findings for experiments. Published by AIP Publishing. https://doi.org/10.1063/1.5022187

The spontaneous generation of terahertz radiation is an

important yet challenging problem in applied physics.1 An

interesting proposal is to generate terahertz radiation through

the Dyakonov-Shur (DS) instability of a two-dimensional

electron gas (2DEG).2–4 This instability occurs in a uniform

flow of current through the 2DEG, subject to non-standard,

but experimentally achievable, boundary conditions. In the

xy-plane, we consider an infinite strip of 2DEG of width L
(0� x�L). A uniform, small, background current density

Jx> 0 is pushed through the strip, and we fix density fluctua-

tions to vanish at x¼ 0 and current fluctuations to vanish at

x¼L. Assuming homogeneity in the y-direction, one finds

that for small currents Jx, an instability arises. Spontaneous

fluctuations in density and current of amplitude � at time t¼ 0

grow to amplitude �ect at time t. In terms of the fluid velocity

u0¼ Jx/q, with q being the charge density of the 2DEG

c � u0

L
: (1)

Some signatures of the DS instability have been found in

experiment,5,6 but a clear observation of the DS instability

remains challenging. Perhaps one reason is that the original

proposal2 for the instability was in a hydrodynamic regime,7

where electrons collide with other electrons at a rate 1/see

much larger than the rate 1/simp of electron-impurity/phonon

or umklapp collisions. With a few exceptions,8–12 most elec-

tron liquids have not been experimentally observed in a hydro-

dynamic regime. However, an interesting assertion is that the

DS instability also exists in a ballistic limit where see!1
and simp!1.13 If the hydrodynamic limit is not necessary,

then the DS instability should be observable in a much larger

set of 2DEGs and temperature ranges. The difficulty of observ-

ing the DS instability would be even more puzzling.

A quick check of this assertion is to compute the viscous

correction to c2,3,14

c ¼ u0

L
� p2�

8L2
; (2)

with � � v2
Fsee being the dynamical viscosity and vF the

Fermi velocity. For simplicity in (2), and throughout this let-

ter, we take simp!1. The hydrodynamic limit corresponds

to vFsee�L. If this inequality is saturated, we estimate that

c � �ðvF � u0Þ=vFsee, which is expected to be negative.

This simple calculation suggests that the DS instability could

vanish if electron-electron interactions are weak enough.

In this letter, we explicitly check the fate of the DS

instability and numerically calculate c for a two-dimensional

Fermi liquid, using a toy model of (quantum) kinetic theory,

with suitable boundary conditions. When vFsee � L, we

observe quantitative agreement with (2). When vFsee � L,

we find that the instability becomes somewhat sensitive to

boundary conditions. For “clean” boundaries with specular

scattering, we numerically find that

c � u0

L
� p2�

8L2

1

1þ pvs

2L
see

� �2
(3)

approximates the instability growth rate. Here, vs is the speed

of sound in the electron fluid. Hence, as see!1, we recover

(1), in agreement with Ref. 13. However, for “dirty” bound-

ary conditions with non-specular scattering, we numerically

observe that c< 0 becomes possible as see!1. Our results

demonstrate how boundary conditions on non-hydrodynamic

modes could play an important role in suppressing the DS

instability in experimental systems.

We now turn to more quantitative details of our study.

We compute the low temperature dynamics of an isotropic

Fermi liquid in d¼ 2 spatial dimensions, employing the

model described in Refs. 8 and 15–17. A thorough introduc-

tion to this model is given in the supplementary material

(SM); here, we summarize the key points. At low tempera-

tures compared to the Fermi temperature, the most important

semiclassical dynamics of a Fermi liquid correspond to the

“sloshing” of the Fermi surface itself. If we are only inter-

ested in dynamics on length scales large compared to the

Fermi wavelength kF, then it suffices to solve for the fermion

distribution function f(x, p). Heuristically, f is the “number

density of quasiparticles of momentum p at position x,” and
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the Pauli exclusion principle forces 0� f� 1 for electronic

quasiparticles. It is useful to write f as

f ðx; pÞ � nF �ðpÞ � l� Uðx; pÞð Þ; (4)

with nFðxÞ � Hð�xÞ at low temperature and H the

Heaviside step function. If the perturbation U is small

f ðx; pÞ � feqðpÞ þ d �ðpÞ � lð ÞUðx; pÞ: (5)

If the Fermi surface is isotropic and (for now) there is no

background velocity (u0¼ 0), then, the d function above sim-

ply fixes jpj ¼ pF and U may be parametrized by the angular

component h of p

U ¼ Uðx; hÞ ¼
X
n2Z

anðx; tÞeinh: (6)

The harmonic a0 is proportional to fluctuations in the number

density of electrons, while a61 correspond to the local den-

sity of (x 6 iy)-momentum. In the toy model described in

Refs. 8, and 15–17, the dynamical time evolution of U is

described by a Boltzmann equation in a relaxation time

approximation18

@tUþ vF cos ðhÞ@xU ¼ �
1

see

P U½ �; (7)

where

P U½ � ¼
X
jnj	2

aneinh: (8)

Due to our setup, we have assumed @y¼ 0. The term on the

right hand side of (7) is the linearized collision integral: it

relaxes all harmonics of U that do not encode a conserved

quantity. This model is not microscopically accurate19,20 but

correctly reproduces both see ¼ 0 and see ¼1 limits.

Our model does not account for electron-impurity scat-

tering. Heuristically, if simp is the electron-impurity scatter-

ing rate, then c! c� 1/2simp.
21,22 High quality 2DEGs can

reach vFsimp � 15 lm,9,23 which is larger than the typical

device size.

For mathematical simplicity, we now take

�ðpÞ ¼ p2

2m
: (9)

To account for background flow, we simply use Galilean

invariance: @t! @tþ u0@x in (7).

In many experimentally realized 2DEGs, the Coulomb

interactions are screened by conductors (“gates”) a few nm

above the sample. This causes an external force2

F ¼ e2

C
rn (10)

on the electron liquid, analogous to a non-vanishing Landau

parameter F 0.24 Here, C is the capacitance of the gates per

unit area and n is the number density of electrons (note

n/ a0). Looking for normal modes where U � e�ixt, (7)

generalizes to

ixU ¼ u0 þ vF cos ðhÞð Þ@xUþ
2v2

g

vF

cos ðhÞ@xa0 þ
1

see

P U½ �;

(11)

with

v2
g ¼

e2n0

mC
; (12)

with n0 being the background electron density. c is given by

max½Imðx
Þ�, where x
 are the eigenvalues of (11), subject

to suitable boundary conditions.

In the hydrodynamic limit, the DS instability is caused

by sound waves with dispersion relation

x � ðu06vsÞk � i
�

2
k2; (13)

with

vs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

F

2
þ v2

g

r
; � ¼ v2

Fsee

4
: (14)

Neglecting the effects of gating leads to a universal speed of

sound vF=
ffiffiffi
2
p

.15,16 In the limit where the dominant forces on

electrons arise from the gate, vg� vF and we recover the

speed of sound described in Refs. 2 and 13. Assuming

u0� vs, we can estimate the growth rate c of the instability

as follows: The DS boundary conditions amplify sound

waves that scatter off of the fixed-current boundary. The rate

of these scattering events is �vs/L, and the amplification fac-

tor is �u0/vs. A sound wave of any amplitude decays at a

fixed rate, given in (13), with k�p/2L. Adding the amplifi-

cation rate and the viscous decay rate leads to (2).

In the ballistic limit, a crude approximation is that the

most important corrections to hydrodynamics can be accounted

for by a frequency-dependent viscosity25

�ðxÞ ¼ v2
Fsee

4ð1� ixseeÞ
: (15)

This equation appears qualitatively consistent with more

microscopic calculations in graphene26 and can be derived

by crudely truncating (11) to a few harmonics (see supple-

mentary material). Estimating that we must replace � in (13)

with Re[�(x)] and approximating x� pvs/2L when evaluat-

ing �(x), we obtain our heuristic result (3).

When u0¼ 0, we can also study the minimal quality fac-

tor Q ¼ minkf�Re½xðkÞ�=Im½xðkÞ�g of the waves. Using the

approximations of the previous paragraph, we estimate

Q � 4seev2
s

�
� 8þ 16

v2
g

v2
F

: (16)

This is in qualitative agreement with the Q-factor reported

recently in Ref. 27 in a similar model.

For finite see, we calculate x* and c numerically by

truncating (6) to modes with jnj � nmax. The details of the

numerical methods can be found in the supplementary mate-

rial. The DS boundary conditions are

0 ¼ a0ð0Þ; (17a)
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0 ¼ u0a0ðLÞ þ
vF

2
a1ðLÞ þ a�1ðLÞð Þ: (17b)

Choosing the remaining boundary conditions on an for jnj
	 2 requires some more care. For example, the number of

boundary conditions required by the truncated (11) is 2nmax

when u0¼ 0 and 2nmax þ 1 otherwise. The final boundary

condition at u0> 0 must be chosen so that the u0! 0 limit is

not singular. This issue is discussed in hydrodynamic lan-

guage in Ref. 28; our resolution appears to be new. We have

found that the proper choice of this boundary condition is

a2ð0Þ þ a�2ð0Þ ¼ 0. A natural choice to fix the remaining

2nmax – 2 boundary conditions is to demand that, up to

the three prior boundary conditions, UðhÞ ¼ Uðp� hÞ or

an ¼ ð�1Þna�n. Physically, this boundary condition states

that the contacts to the 2DEG are atomically “clean”: quasi-

particles specularly reflect off of the boundary. Alternative

“dirty” boundary conditions are that incoming particles

reflect back at a random (outgoing) angle. More details on

the choice of boundary conditions are provided in the supple-

mentary material.

For now, let us take clean boundary conditions, up to the

caveats of the previous paragraph. We present the entire

eigenvalue spectrum in Fig. 1, corresponding to fluctuations

which are even under y! –y (the odd sector decouples). As

expected, we observe that the DS instability is carried

entirely by sound modes in the hydrodynamic limit, within

the full kinetic theory. All non-hydrodynamic degrees of

freedom have a finite decay rate: Imðx
Þ � �s�1
ee . In the infi-

nite volume limit with u0¼ 0,24 it has been shown analyti-

cally that Imðx
Þ � �s�1
ee for all non-hydrodynamic modes.

In all plots in this letter, we work in units where vF¼L¼ 1;

thus, see< 1 is “hydrodynamic” and see> 1 is “ballistic.”

Continuing to assume clean boundary conditions, we

next compute c as a function of both see and vg, for fixed

u0> 0; the result is shown in Fig. 2. Regardless of vg, we find

(2) universally in the hydrodynamic limit. Once vFsee�L, we

observe that c reaches a minimal value cmin. For larger see, c
increases as see increases. In fact, we observe that for any vg,

once see is large enough, c> 0 (for these boundary condi-

tions). The DS instability occurs in both the hydrodynamic

and the ballistic limits, while possibly disappearing at the

crossover between them, depending on u0 and vg. Figure 2

also confirms that our heuristic estimate (3) captures the

qualitative physics of the entire ballistic-to-hydrodynamic

crossover. Figure 3 gives an alternate perspective, showing

where c is positive or negative as a function of see and u0. The

“lobe” shape where the instability disappears in Fig. 3 is equiv-

alent to the dip in c(see) observed in Fig. 2, and the DS instabil-

ity is most suppressed when vFsee�L. Although one cannot

directly compare the minimal Q-factor in Fig. 2 with (16), as

u0> 0, we do observe that the width and magnitude of the dip

in c both decrease as vg increases, in agreement with (16).

Numerical data in Fig. 2 are qualitatively consistent with a

Q-factor �10, again in agreement with (16) and Ref. 27.

We have numerically observed that c is insensitive to

boundary conditions in the hydrodynamic limit. The ballistic

limit, however, is sensitive to boundary conditions, and an

accurate numerical computation of c can become quite chal-

lenging. In the collisionless limit see!1, Eq. (11) for U(x,

h) decouples at every h, and a uniform discretization hj

¼ 2pj=nmax for j ¼ 0; 1;…; nmax � 1 becomes more natural

than a (spectral) harmonic truncation: see supplementary

material. Thus, the functions U(x, hj) are only coupled via

FIG. 1. The even part of the eigenvalue spectrum of (11) with vg¼ 0,

see¼ 1/2, and DS boundary conditions, for two values of u0. For small see,

the instability arises exclusively in the hydrodynamic sound channel (points

on the fictitious curve approaching x¼ 0). An infinite number of ballistic

modes appears for Im(x)� –1/see.

FIG. 2. c as a function of see, for u0¼ 1/20, various gate voltages vg, and

clean boundary conditions. An increasing gate voltage favors the instability.

Solid markers show numerical data points, while the dashed line is our heu-

ristic analytical result (3).

FIG. 3. Values of u0 and see where c> 0 (c< 0) are shown in black (white).

Dashed lines show the regime of instability at finite vg. The gold line shows (2).
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the boundary conditions. The DS conditions of vanishing

density and current fluctuations at x¼ 0 and x¼L translate

to
P

j Uð0; hjÞ ¼ 0 and
P

j½u0 þ vF cos ðhjÞ�UðL; hjÞ ¼ 0,

respectively. Besides the DS conditions, we additionally use

either clean boundary conditions Uðx; hjÞ ¼ Uðx; p� hjÞ at

both ends or a “no-slip” reflection Uð0; hjÞ ¼ Uð0; hj þ pÞ on

the left together with “dirty” boundary conditions at x¼L,

such that the distribution U(L, hj) for “outgoing” angles hj

[i.e., u0 þ vF cos ðhjÞ < 0] is uniform. Intuitively, these dirty

boundary conditions correspond to an atomically rough con-

tact surface, upon which an incoming quasiparticle is equally

likely to be scattered off of the boundary at any scattering

angle. A detailed description of the dirty boundary condi-

tions is provided in the supplementary material. Figure 4

shows the numerically computed eigenvalue spectrum of the

collisionless kinetic equation for these two variants of

boundary conditions, at fixed u0. We observe that for clean

boundary conditions, the instability is present, while for no-

slip—dirty boundary conditions, the instability is absent.

Our finding that dirty boundary conditions destroy the

DS instability is consistent with Ref. 29, which found that

boundary conditions could damp collisionless excitations in a

finite length cavity. However, we have also demonstrated the

existence of boundary conditions where the DS instability is

recovered in the ballistic limit. For certain values of u0 and vg,

it is possible for the DS instability to persist for arbitrary

electron-electron scattering times see, as depicted in Fig. 2.

In this letter, we have numerically computed c across

the ballistic-to-hydrodynamic crossover, in a cavity with the

Dyakonov-Shur boundary conditions. We observed that the

fate of the instability in the ballistic limit is sensitive to

boundary conditions on non-hydrodynamic modes. This pro-

vides a further mechanism for suppressing the instability in

experimental systems.

The calculations of this paper appear most important for

the Fermi liquid of graphene, where vF see�L.10,12 However,

it is believed that other 2DEGs, such as GaAs-based hetero-

structures, are deeper in the hydrodynamic limit, with

simp � 10see and vssee � L.2 However, we observe in Fig. 2

that the hydrodynamic regime (where c is a decreasing func-

tion of see) shrinks substantially if vg � vF; see also Ref. 24.

If the modes responsible for the DS instability need not be

hydrodynamic even if see � simp, then the hydrodynamic

assumption frequently employed in the literature may need

scrutiny.

We suggest a careful study of electronic boundary con-

ditions in the cavities where the DS instability is searched

for, perhaps using transverse electron focusing.30 This tech-

nique has revealed clean boundaries with almost specular

reflection in graphene.30 In a system with clean boundary

conditions, our work predicts the DS instability both in a

hydrodynamic limit and in a collisionless limit at very low

temperatures where electron-phonon scattering is negligible.

Furthermore, at higher temperatures, the absence of the DS

instability could be used as a heuristic upper and lower
bound on see and �. Direct probes of � are challenging,31 and

indirect measures are imprecise.32,33 Another measure of see

and � will prove useful for matching theories of electronic

hydrodynamics to experiments.

See supplementary material for a detailed derivation of

our toy model of quantum kinetic theory, a description of

our numerical methods, and a discussion of the boundary

conditions employed in our simulations.
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