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We present determinant quantum Monte Carlo simulations of the hole-doped single-band Hubbard-Holstein
model on a square lattice, to investigate how quasiparticles emerge when doping a Mott insulator (MI) or a
Peierls insulator (PI). The MI regime at large Hubbard interaction U and small relative e-ph coupling strength
λ is quickly suppressed upon doping, by drawing spectral weight from the upper Hubbard band and shifting
the lower Hubbard band towards the Fermi level, leading to a metallic state with emergent quasiparticles at the
Fermi level. On the other hand, the PI regime at large λ and small U persists out to relatively high doping levels.
We study the evolution of the d-wave superconducting susceptibility with doping, and find that it increases with
lowering temperature in a regime of intermediate values of U and λ.
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I. INTRODUCTION

The doping of a Mott insulator is a canonical problem
in condensed matter physics [1]. It is relevant for under-
standing the properties of many families of materials, in
particular the emergence of high-Tc superconductivity in the
cuprates [2–5], and the interplay between the pseudogap
and superconductivity. Similarly, hole doping the charge-
density-wave insulating phase of the barium bismuthates
Ba1−xKxBiO3 and Ba1−xPbxBiO3 produces a superconducting
state at high temperatures [6,7]. In addition to the strong
electronic correlations in these systems, the electron-phonon
(e-ph) interaction is also quite strong [8–11]. Therefore, an
important, and very general, question is whether the interplay
of the e-e and e-ph interactions can lead to the emergence
of competing phases over a large part of the phase diagram,
and how quasiparticles emerge when doping a Mott or Peierls
insulator. A detailed understanding of these questions requires
the simulation of strongly interacting model systems using
nonperturbative methods, which treat both interactions on an
equal footing.

The Hubbard-Holstein (HH) model is a natural starting
point for studying the interplay of e-e and e-ph interactions in
doped Mott or Peierls insulators. There have been a variety of
studies of the HH model at half-filling in one [12–15] and two
dimensions (2D) [16–20], as well as a number of single-site
and cluster dynamical mean-field theory (DMFT) studies
[21–32]. These studies have revealed a competition between
antiferromagnetic (AFM) and charge-density wave (CDW)
orders, which are dominant at large e-e and e-ph coupling
strengths, respectively. Both are predominantly (π/a,π/a)
orders near half-filling in 2D, or similar commensurate
orders in other dimensions. Moreover, some of these studies

find evidence for an emergent metallic phase near the boundary
of the AFM and CDW orders, even at large couplings
[12–18,23–26,28,31,32]. Specifically, the half-filled HH
model in one dimension and at finite temperature exhibits
dominant superconducting pair correlations in the metallic
state [12,13]. Also in two dimensions and at finite temperature,
a metallic state has been reported, with the low-energy quasi-
particle band separated from a relatively broad high-energy
band [16–18].

Much less is known about the doped HH model. At large
doping levels (quarter-filling), previous work using Hartree-
Fock approximations finds a charge-ordered antiferromagnetic
phase [33]. The effect of electronic correlations mediated by
the Coulomb repulsion on the e-ph coupling was investigated
in detail using diagrammatic linear response techniques for
the e-ph interaction [34], in combination with determinant
quantum Monte Carlo (DQMC) calculations at 12% doping.
According to the study, the e-ph coupling is uniformly
suppressed as U increases in the regime U � 6t , but then
increases at small momentum transfer for large U . Upon
doping, the antiferromagnetic correlations, e-ph interactions,
and tendency to form polarons weaken [27]. On the other hand,
at fixed doping, nonlocal antiferromagnetic correlations and
e-ph coupling were found to cooperate for polaron formation
[29,35].

In this paper we employ the numerically exact nonperturba-
tive DQMC method to provide a systematic study of the doped
HH model at a variety of e-e and e-ph interaction strengths.
We address the question how quasiparticle bands emerge
upon doping, analyze how both interactions renormalize
the quasiparticle dispersion, and map out the evolution of
superconducting susceptibilities.
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II. MODEL AND METHODS

The Hamiltonian for the single-band HH model is H =
Hkin + Hlat + Hint, where

Hkin = −
∑
〈ij〉σ

tij c
†
iσ cjσ − μ

∑
iσ

n̂iσ ,

Hlat =
∑

i

(
M�2

2
X̂2

i + 1

2M
P̂ 2

i

)
, (1)

Hint = U
∑

i

(
n̂i↑ − 1

2

)(
n̂i↓ − 1

2

)
− g

∑
iσ

n̂iσ X̂i .

Here 〈. . . 〉 denotes summation over nearest and next-nearest
neighbors; c

†
iσ and ciσ create and annihilate an electron

with spin σ at site i, respectively; n̂iσ = c
†
iσ ciσ ; the hopping

amplitude tij is equal to t if i and j are nearest neighbors,
and equal to t ′ for next-nearest neighbors; � denotes the
phonon energy; U is the e-e interaction strength and g is
the e-ph interaction strength; μ is the chemical potential.
The dimensionless e-ph coupling constant is defined as λ =
g2/(M�2W ), where W = 8t is the electronic bandwidth.
Throughout, we take t = 1, M = 1, and a = 1 as our units
of energy, mass, and length, respectively. We set t ′ = −0.25t ,
� = t , and vary μ to control the filling. The cluster dimension
is a square N = 8 × 8 lattice in this study.

We simulate the HH model using DQMC, which is a
numerically exact method that treats the e-e and e-ph inter-
actions on an equal footing and nonperturbatively [17,36,37].
The imaginary time discretization step is set to �τ = 0.1/t .
We have checked that the Trotter error associated with this
discretization does not qualitatively effect the observations
reported here. The nonzero t ′ and e-ph coupling, as well
as doping away from half-filling all contribute to a fermion
sign problem [17], which scales exponentially in the inverse
temperature β and limits the accessible β to around β = 4/t . In
particular, an extrapolation to estimate ground state quantities
would be too imprecise. Nevertheless, at these elevated
temperatures, we can still discern clear MI and PI behavior, as
well as trends in the superconducting susceptibilities.

The DQMC simulation provides the imaginary time elec-
tron Green’s function G(K,τ ) = 〈Tτ cK(τ )c†K(0)〉 on a discrete
grid of momentum space points {K}, determined by the size of
the simulation cluster with periodic boundary conditions. The
low-energy electronic spectral weight is directly accessible
from the imaginary time Green’s functions via the relation[38]

G(K,β/2) = 1

2

∫
dω

A(K,ω)

cosh(βω/2)
. (2)

We perform analytic continuation to real frequencies to obtain
the electron spectral function A(K,ω) by utilizing the maxi-
mum entropy method (MEM) [39,40], with an uninformative
(flat) model as the entropic prior. For the high-resolution
spectral function plots shown in this paper, we interpolate the
self-energy 
(K,ω) → 
(k,ω); see Ref. [18] for complete
details.
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FIG. 1. Top row: Dependence of βG(r = 0,τ = β/2) on λ at
β = 3/t . While the CDW region at large λ remains almost unchanged
with doping, βG(0,β/2) for U � 6t increases with doping at small
λ. Bottom row: Temperature evolution of βG(0,β/2) for U = 6t ,
indicating a metallic state in regions where βG(0,β/2) increases
with β.

III. SPECTRAL FUNCTION AND EMERGENT
QUASIPARTICLE BANDS

Figure 1 uses βG(r = 0,τ = β/2) as a measure of how the
spectral weight around the Fermi level changes with λ. As
expected, at half-filling and small values of λ, increasing U

suppresses spectral weight and opens a Mott gap, resulting
in an antiferromagnetic MI [Fig. 1(a)]. With hole doping
[Fig. 1(b)], spectral weight is restored at the Fermi level,
indicating that the Mott gap closes.

Conversely, a dominating e-ph interaction (large λ and
small U ) leads to q = (π,π ) CDW ordering supported by
phonons. Accordingly, in this PI regime, spectral weight at the
Fermi level is suppressed [Figs. 1(a) and 1(b)]. One notices that
the spectral weight is almost unaffected by light to moderate
hole doping when comparing Figs. 1(a) and 1(b) at large λ.

In the region λ � 0.6 in Fig. 1(a), the spectral weight
βG(0,β/2) monotonically increases with λ for U = 6t and
U = 8t at half-filling. This behavior is consistent with the
effective U model

Ueff(ω) = U − λW�2

�2 − ω2
(3)

obtained by integrating out the phonons in a path integral
framework, which maps the HH model onto a Hubbard model
with a frequency-dependent effective interaction strength
[41,42]. Specifically, λ should reduce the effective U , thus
inhibiting the Hubbard interaction from opening a Mott gap.
At 〈n〉 = 0.85 in Fig. 1(b) this trend is reversed, i.e., the
spectral weight now decreases with λ. The observation could
be explained by a weaker influence of U in the doped regime,
such that the effect of λ in dressing the carriers, and ultimately
opening a CDW gap, sets in earlier.

Figures 1(c) and 1(d) provide evidence for a metallic state in
regions where βG(0,β/2) increases with lowering temperature
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FIG. 2. The spectral function A(k,ω) along high symmetry cuts through the Brillouin zone, for U = 6t , β = 3/t and t ′ = −0.25t . Each
row corresponds to a fixed value of λ, and each column to a fixed doping level, as denoted by the labels. The red lines indicate the noninteracting
band structure, and the black dashed lines the Fermi level.

(larger β). According to Fig. 1(c), the spectral weight increases
in the range 0.4 � λ � 0.8 at half-filling 〈n〉 = 1, as observed
in previous studies [16,18]. Doping extends this range to 0 �
λ � 0.85, see Fig. 1(d), indicating that parts of the MI region
at half-filling become metallic with doping.

To facilitate a more detailed analysis, Fig. 2 illustrates the
spectral function A(k,ω) along high symmetry cuts through
the Brillouin zone at U = 6t . Each row corresponds to a fixed
value of λ, and each column to a fixed doping level. For the
Hubbard model without phonons (λ = 0) and at half-filling
(〈n〉 = 1), spectral weight is concentrated in upper and lower
Hubbard band structures [Fig. 2(a)], which are respectively
centered at (π,π ) and (0,0) and separated by the Mott gap.
With hole doping, spectral weight shifts from the upper band

into the lower band at λ = 0 (top row in Fig. 2), and at the
same time the lower band moves toward the Fermi level to
form a quasiparticle band. That is, one arrives at a metallic
state with spectral weight concentrated around the Fermi level.
Moreover, the location of the Mott gap shifts toward higher
energies (with respect to the Fermi level) with hole doping.
These results agree with previous studies [43–45].

Next, we investigate the influence of the e-ph interaction on
this quasiparticle band (see third and fourth column of Fig. 2).
Increasing λ opens a CDW gap at the Fermi level for all fillings
in Fig. 2, different from the effect of doping a MI, which shifts
the gap upward. For large λ = 1, the spectral weight below the
Fermi level is spread out to an almost twice as large energy
range, when comparing Fig. 2(c) with Fig. 2(o) in the third
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FIG. 3. The spectral function A(k,ω) along high symmetry cuts through the Brillouin zone, realizing Ueff = 4t by U = 4t , λ = 0 in the
top row and U = 8t , λ = 0.5 in the bottom row.

column. Also, with increasing λ, a large portion of the spectral
weight is shifted above the Fermi level into a relatively broad
upper CDW band.

In Fig. 3, we probe the applicability of the effective U model
from Eq. (3) in the antiadiabatic limit � → ∞, i.e., Ueff =
U − λW , by a direct comparison of the spectral function for
U = 4t , λ = 0 (top row) with U = 8t , λ = 0.5 (bottom row).
That is, both rows realize Ueff = 4t . For the weaker Hubbard
interaction in the top row, doping hardly affects the spectral
function, except for a small chemical potential shift. On the
other hand, doping qualitatively changes the spectral weight
for U = 8t , and quasiparticle bands form around 〈n〉 = 0.85.
Moreover, the upper and lower Hubbard bands are separated
at half-filling [Fig. 3(e)], and the spectral function is much
more incoherent for the stronger interaction at λ = 0.5. We
observe a similar increase of incoherence for Ueff = 2t (data
not shown). In summary, the spectral function exhibits much
richer structure than suggested by the effective U model.

IV. SUPERCONDUCTING SUSCEPTIBILITIES

Previous work finds intervening superconducting order
between SDW and CDW phases at 15% hole doping [46].
Due to the limitation to relatively high temperatures, we
cannot directly observe a superconducting phase. Instead, we
examine the following s- and d-wave superconducting pairing
susceptibilities [47]. They are defined as

Ps,d-wave = 1

N

∫ β

0
dτ 〈Tτ�s,d-wave(τ )�†

s,d-wave(0)〉 (4)

with the s-wave operator

�†
s-wave =

∑
i

c
†
i↑c

†
i↓ (5)

and the d-wave operator

�
†
d-wave = 1

2

∑
iδ

Fδ c
†
i↑c

†
i+δ↓. (6)

The sum over δ runs over nearest-neighbor sites, and F±x̂ = 1,
F±ŷ = −1, corresponding to the form factor cos(kx) − cos(ky)
in momentum space.

Figure 4 visualizes the superconducting susceptibilities as
a function of filling. The colors correspond to various values
of λ. The characteristic dip around half-filling and U � 4t is
due to the lack of quasiparticles resulting from the antiferro-
magnetic Mott gap. Thus for small λ � 0.4, the d-wave super-
conducting susceptibility is largest in the doped compound.
Note that the strength of the pairing, determined for instance
by the pairing vertex, is in fact strongest at half-filling [48].

The s-wave superconducting susceptibility is uniformly
suppressed with increasing U , as expected since the interaction
penalizes double occupancy. This suppression has the largest
effect when λ is small.

Analogously, at small U = 2t , both the s- and d-wave
superconducting susceptibilities are suppressed with
increasing λ � 0.4, see Figs. 4(a) and 4(e). This is consistent
with the opening of a CDW gap [16], entailing a decreasing
spectral weight around the Fermi level. (Conversely, the peak
of the d-wave susceptibility around half-filling and λ = 0
stems from the large available spectral weight.) Moreover, the
(π,π )-CDW regime at large λ consists of doubly occupied
sites with empty nearest neighbors, thus suppressing the
d-wave pairing field in Eq. (6).

On the other hand, at λ = 0.6 the d-wave susceptibility
increases with the Hubbard interaction up to U = 6t and
does not exhibit a Mott dip, suggesting that the e-e and
e-ph interactions synergistically interplay to enhance d-wave
pairing, somewhat analogous to a previous study [29].
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FIG. 4. d-wave (top) and s-wave (bottom) superconducting susceptibilities at β = 3/t , for various values of U .

Further insight can be gained from the trend with lowering
temperature. Figure 5 shows the temperature dependence of
the superconducting susceptibilities, for the same simulation
parameters as in Figs. 1(c) and 1(d). Both at half-filling and
15% hole doping, the d-wave superconducting susceptibility
is suppressed at large λ � 0.9, in accordance with the small
quasiparticle weight as a CDW gap opens. At small and
intermediate values of the e-ph coupling strength, Pd-wave

increases with lowering temperature. This is unexpected at
half-filling [Fig. 5(a)] due to the antiferromagnetic Mott gap,
but more reasonable for 15% hole doping [Fig. 5(b)]. There,
the superconducting susceptibility has a uniform plateau as a
function of λ for λ � 0.6 [Fig. 5(b)], in the region where quasi-
particles are available at the Fermi level according to Fig. 2.
Both the spectral weight and the pairing strength contribute to
the superconducting susceptibility; since the spectral function
slightly decreases with λ, the plateau of Pd-wave suggests that
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FIG. 5. Temperature dependence of the d-wave (top) and s-wave
(bottom) superconducting susceptibilities, both at half-filling and at
15% hole doping, for U = 6t and β = 3/t .

the pairing strength slightly increases with λ. In contrast to
that, the s-wave superconducting susceptibility exhibits a very
weak temperature dependence [Figs. 5(c) and 5(d)], as the
Hubbard interaction penalizes double occupancy [47].

V. SUMMARY AND CONCLUSIONS

The calculations in this work demonstrate that the HH
model is capable of hosting various orders emerging from
the interplay of the e-e and e-ph interactions and doping. We
have seen that the antiferromagnetic order in the Mott insulator
region is fragile and disappears with doping, whereas the CDW
at large e-ph interaction strength is quite independent of the
doping level, at least out to 25% hole doping. The robustness
of the charge ordering tendency driven by e-ph interactions
enables a potential avenue for studying the charge ordering
found universally in underdoped cuprate superconductors.
In the doped Hubbard model, where only e-e interactions
are considered, recent numerical results [49] have provided
strong evidence for the presence of stripes (interlocked spin
and charge ordering). However, a multitude of experimental
phenomena are not demonstrated, including the charge order-
ing wave vector, variations of its doping dependence among
different cuprate families, the lack of static spin ordering in the
majority of cuprate compounds, and importantly, long-range
superconductivity. Taken at face value, these results for the
Hubbard model imply the need to account for further degrees
of freedom, beyond local e-e interactions, to understand the
numerous features of the cuprate phase diagram.

In the present study, the HH model is used as a minimal
model for exploring the impact of the lattice degree of freedom
in a strongly correlated system. While we do not specifically
investigate incommensurate charge or spin ordering as in the
cuprates, the diverse effects associated with incorporating the
lattice in our minimal model encourage similarly studying
the impact of e-ph interactions via more realistic models. A
straightforward but computationally expensive improvement
would be to extend the simulations to larger and more varied
cluster geometries. This allows any incommensurate order
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to appear clearly in correlation functions, as shown in our
recent work [50]. Furthermore, material-specific details can be
described by generalizations of the HH model. For example,
multiorbital models containing oxygen degrees of freedom
can capture the dominant phonon modes in cuprates that are
associated with oxygen vibrations. Momentum dependence
of the electron-phonon coupling can be taken into account
via a spatially nonlocal electron-phonon interaction. Thus, we
hope that the present methodology can address open questions
related to strongly interacting systems.
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