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We introduce a density functional formalism to study the ground-state properties of strongly correlated
dipolar and ionic ultracold bosonic and fermionic gases, based on the self-consistent combination of the
weak and the strong coupling limits. Contrary to conventional density functional approaches, our
formalism does not require a previous calculation of the interacting homogeneous gas, and it is thus very
suitable to treat systems with tunable long-range interactions. Because of its asymptotic exactness in the
regime of strong correlation, the formalism works for systems in which standard mean-field theories fail.
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Introduction.—In contrast with its widespread use and
success in areas as diverse as quantum chemistry [1],
materials science [2] or semiconductor nanostructures [3],
density functional theory (DFT) has received relatively little
attention in the very active field of ultracold atomic gases. It
is well known that the Hohenberg-Kohn theorems, origi-
nally formulated in terms of the electron gas [4,5], hold for
both fermionic and bosonic systems, as well as for inter-
actions different than the Coulomb one. However, the lack
of adequate density functionals has hindered the role of
DFT in the study of ultracold atomic gases in favor of other
well-established approaches, such as thewidely usedGross-
Pitaevskii (GP) method in the case of Bose gases. The latter
is a mean-field approach, missing the correlation effects that
play a crucial role inmany phenomena occurring in ultracold
quantum gases [6]. One then often turns to configuration-
interaction (CI), quantumMonte Carlo (QMC), or Green’s-
function methods (for recent reviews, see, e.g., Refs. [6–8]).
The advantages of DFT are very well known from

electronic-structure calculations [1–3]. Being an, in princi-
ple, exact theory (although in practice relying on approx-
imations), DFT allows us to go beyond the mean-field
description by taking into account correlations between the
interacting particles. The Kohn-Sham (KS) mapping of the
many-body problem into a noninteracting one is applicable
to particle numbers orders of magnitude larger than those
accessible with wave function methods [3,9–12]. Initial
efforts have already been made to generalize the formalism
to bosonic and fermionic ultracold quantum gases [13–17].
However, the biggest challenge in Kohn-Sham DFT—
for both electronic and ultracold atomic systems—is the
construction of good approximations for the so-called
exchange-correlation functional [1], the term in the total
energy describing themany-body effects beyond theHartree

level. The simplest approximations are those based on
homogeneous interacting models, where analytical expres-
sions for the exchange-correlation energy per particle are
often available by fitting QMC [17,18] or Bethe-Ansatz
calculations [16,19,20]. Such so-called local-(spin-)density
approximations [L(S)DA] have been generalized and
applied to the study of Bose [13–15,21] and Fermi
[16,17,20] ultracold gases with short-range interactions in
different geometries and dimensionalities with promising
results. However, the downside of L(S)DA-based approx-
imations is that they become unreliable for systems in which
the interactions between the particles largely dominate
over the kinetic energy and characteristic strong-correlation
phenomena arise. Moreover, L(S)DA approaches may
become unpractical for systems with tunable interactions,
since for each different interaction a previous many-body
calculation of the corresponding uniform system is needed,
which for long-range interactions can be demanding even
in the simplest one-dimensional case [18].
In this Letter, we introduce an alternative approxi-

mate functional to study ultracold gases with long-ranged
interactions, based on the exact strong coupling limit of
the Hohenberg-Kohn density functional [22–24]. This
provides an effective single-particle potential in a rigorous
and physical way [25–27], without relying on calculations
of the uniform system energy by means of other many-
body approaches. The formalism becomes asymptotically
exact in the limits of both vanishing and extremely strong
coupling. The latter is obviously the most interesting,
because of the plethora of important phenomena that are
out of reach of mean-field theories and problematic for
wave function methods. Furthermore, our construction can
be equally applied to fermionic and bosonic gases, by
simply changing the kinetic-energy functional.
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Formalism.—The key idea of Kohn-Sham density func-
tional theory (KS DFT) is that the ground-state particle
density nðrÞ and energyE0 of a generalN-body systemwith
interparticle interaction vintðr − r0Þ and external confining
potential vextðrÞ can be mapped (with some mathematical
subtle caveats, see, e.g., Ref. [28]) into a noninteracting
problem with the same particle density nðrÞ, moving in an
effective potential vKSð½n�; rÞ ¼ vextðrÞ þ vHxcð½n�; rÞ. The
Hartree-exchange-correlation (Hxc) potential vHxcð½n�; rÞ,
which is a Lagrange multiplier for the density constraint, is
obtained from the functional derivative ½δEHxc½n�=δnðrÞ� of
the difference in energy EHxc½n� between the interacting
and the noninteracting systems. Physically, vHxcð½n�; rÞ
transforms the many-body interaction effects on the density
into a single-particle potential. The noninteracting system
is usually chosen in order to capture the relevant effects
of statistics on the kinetic energy: for both fermions and
bosons it is defined as the system with density nðrÞ and
minimum possible kinetic energy with fermionic or bosonic
statistics, respectively. The problem is then reduced to
the self-consistent solution of the Kohn-Sham equations
½− 1

2
∇2 þ vextðrÞ þ vHxcð½n�; rÞ�ϕiðrÞ ¼ εiϕiðrÞ, where the

Hxc potential vHxcð½n�; rÞ ¼ vmfð½n�; rÞ þ vxcð½n�; rÞ is
the sum of the Hartree mean-field (mf) and exchange-
correlation (xc) contributions, the latter needing to be
approximated. The KS single-particle orbitals ϕi determine
the ground-state density of the system via the relation [5]
nðrÞ ¼ P

inijϕiðrÞj2, where ni is the occupancy of the ith
orbital. For bosonic systems at zero temperature one has
n0 ¼ N, and by neglecting the exchange-correlation term in
the KS potential one recovers the Gross-Pitaevskii equation,
widely used for the study of dilute ultracold Bose gases
with short-range interactions, where the effects of many-
body correlations do not play an important role.
Here we introduce the “strictly correlated particles”

(SCP) functional VSCP
int ½n�, which is complementary to the

KS noninteracting kinetic energy: it is defined as the
minimum possible expectation value of the particle-
particle interaction in a given density nðrÞ. For the
Coulomb interaction, this functional has been widely
studied [22,23,29], and it has been shown to be able to
capture the physics of the strongly correlated regime in
model quantum wires and quantum dots [25–27], yielding
results beyond the mean-field level. The construction of
VSCP
int ½n� for a given density nðrÞ is equivalent to an opti-

mal transport (or mass transportation theory, a well-
established field of mathematics and economics) problem
with cost given by the interaction [30,31]. While several
rigorous results have appeared recently in the mathematics
literature [32–39], here we provide a simplified physical
overview. The idea is that if we minimize the expectation
of the interparticle interaction in a given density nðrÞ,
we must have a nonzero probability to find one
particle wherever nðrÞ ≠ 0. The many-particle state is
then a continuum superposition of strictly correlated
configurations (r1 ¼ r; r2 ¼ f2ðrÞ;…; rN ¼ fNðrÞ), with
r spanning the whole region where nðrÞ ≠ 0,

jΨSCPðr1;…;rNÞj2 ¼
1

N!

X

℘

Z
dr

nðrÞ
N

δ(r1− f℘ð1ÞðrÞ)

× δ(r2− f℘ð2ÞðrÞ) � � �δ(rN − f℘ðNÞðrÞ);
ð1Þ

and ℘ denotes permutations of f1;…; Ng. The co-motion
functions ffig are highly nonlocal functionals of the
density satisfying the equations [22,24,30]

nðrÞdr ¼ nðfiðrÞÞdfiðrÞ; ð2Þ
which ensure that jΨSCPj2 of Eq. (1) has density nðrÞ.
For one-dimensional (or spherically symmetric) systems,
Eqs. (2) have analytical solutions [22,25,29,30]. The ffig
also satisfy cyclic group properties dictated by the indis-
tinguishability of the particles [22,30]. The SCP func-
tional is then [22,40]

VSCP
int ½n� ¼ 1

2

Z
drnðrÞ

XN

i¼2

vint(r − fiðrÞ): ð3Þ

Here, we explicitly consider the possibility of anisotropic
interactions depending on r − r0 (with vintðrÞ ¼ vintð−rÞ)
and not just on jr − r0j, such as the interaction between
dipoles aligned by an external field [41–43]. The same steps
of Refs. [22,25,26] can be repeated for this more general
class of interactions, leading to an exact equation for the
functional derivative vSCPð½n�; rÞ≡ ½δVSCP

int ½n�=δnðrÞ�,

∇vSCPð½n�; rÞ ¼
XN

i¼2

∇vint(r − fiðrÞ); ð4Þ

which has a clear physical meaning: the potential vSCPðrÞ
represents a force field equal to the net interaction felt
by a particle at position r due to the other N − 1 particles.
Our “KS-SCP DFT” approach consists of using VSCP

int ½n�
to approximate the mean-field plus exchange-correlation
terms of the total energy functional or, equivalently,
its functional derivative vSCPð½n�; rÞ of Eq. (4) to approxi-
mate the Hartree-exchange-correlation potential [26,27],
vKSð½n�; rÞ≃ vextðrÞ þ vSCPð½n�; rÞ. This way, both the
kinetic energy and the many-body interactions are treated
on the same footing in the self-consistent KS equations.
A few remarks are necessary on the kind of interactions

vintðrÞ for which the KS-SCP DFT can be applied. Several
rigorous results are available for convex repulsive long-
ranged interactions depending on jrj only [22,24,34–39]. In
general, for the SCP formalism to be physically useful, the
interaction vintðrÞ needs to be long-ranged, otherwise the
SCP solution of Eq. (1) is just one of the many minimizers
(and actually the one with maximum kinetic energy) for the
interaction alone in a given density (see Ref. [44] for a
discussion on contact interactions). The SCP functional is
thus naturally very well suited for ionic gases in the
strong-correlation regime, where it is expected to provide
a large part of the total interaction energy [25–27]. Evenmore
interesting is the case of dipolar anisotropic interactions: the
SCP functional combined with the KS kinetic energy
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(fermionic or bosonic) should be able to capture many of the
interesting phenomena observed in the strong-correlation
regime [45–47]. In this case, the SCP solution can be cons-
tructed from the dual Kantorovich formulation [30], for
which few results have started to appear recently [48,49], and
new dedicated algorithms are being developed by the applied
mathematics community of optimal transport [50,51].
Applications to low-dimensional dipolar ultracold

gases.—We consider N ultracold bosonic or fermionic
particles with dipole moment d in quasi-one- (Q1D) and
quasi-two-dimensional (Q2D) geometries. We model these
systems with the external harmonic potential vextðrÞ ¼
1
2
ðω2

xx2 þ ω2
yy2 þ ω2

zz2Þ in the cases where, respectively,
ωy, ωz ≫ ωx, and ωz ≫ ωx ¼ ωy ≡ ω⊥ (effective Hartree
units are used throughout the Letter). For these geometries,
assuming that all the dipoles are oriented in the same dire-
ction due to the action of some external field, one can derive
effective Q1D and Q2D dipole-dipole interaction potentials
(see, e.g., Refs. [45,46] and [47] for the explicit expressions)
by integrating out the harmonic motion along the very
strongly confined directions from the three-dimensional
potential vddðrÞ ¼ d2ð1 − 3cos2θrdÞ=r3 [41], where θrd is
the angle between the dipole moment and the relative posi-
tion between two particles. Since the anisotropic interaction
requires the development of a dedicated dual Kantorovich
algorithm that will be the object of future work, here for the
Q2D dipolar systems we restrict ourselves to the case in
which the dipoles are perpendicular to their plane of motion
and their interaction is purely repulsive and isotropic [47].
To illustrate the kind of accuracy that can be obtained

with the KS-SCP formalism, we chose a case for which
full CI calculations can be also performed [52]. Figure 1
shows the KS-SCP densities for a system with four bosonic
and fermionic dipoles in a Q1D trap. To model this system
we have chosen the oscillator lengths in the longitu-
dinal and perpendicular directions lx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmωxÞ

p
and

l⊥ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=ðmω⊥Þ

p
, such that lx ¼ 10l⊥. In order to consider

different ranges for the interaction strength, we have chosen
d from 0.01 up to 50. This corresponds to dipole lengths,
given by d2 in atomic units a0, ranging from 10−4a0 to
2500a0, thus well within the ranges that can be nowadays
experimentally achieved [53,54]. For comparison, we also
show the results obtained from the mean-field GP approach
for the bosonic case. When d is very small (0.01 and 0.1)
the system is in the weakly interacting regime: we see good
qualitative agreement of the KS-SCP results with the CI for
fermions, and also with the GP calculations for bosons,
reflecting the fact that the correlation effects are negligible.
As d is further increased, however, the picture changes
qualitatively. For d ¼ 1 the CI bosonic results show a
density structure characteristic of the so-called fermionized
regime [45,46], with two tall central peaks and two shorter
lateral ones, indicating that the bosons feel the infinitely
strong short-ranged part of the interaction and behave as
noninteracting spinless fermions. The zeroth-order KS-
SCP approach can only describe this phenomenon in a

qualitative way, barely displaying two incipient lateral
peaks but being not able to reproduce the central structure
for the chosen parameters. This is due to the large under-
estimation of the kinetic correlation energy: in the SCP
state of Eq. (1), the particles are located in their strictly
correlated positions, minimizing the interaction energy for
the given density, but without increasing substantially the
kinetic energy, which is obtained from the KS construction.
The resulting SCP potential of Eq. (4) is then too small,
since the particles are too far from each other. Still, one can
see that the KS-SCP results are much better than those
obtained from the GP approach, the latter yielding a
Thomas-Fermi-like density profile lacking of any structure.
Finally, for strong enough values of the dipole moment
(d ¼ 8, 20, and 50), the system enters the localized regime,
where the CI densities show a characteristic profile with
four clearly marked peaks corresponding to the localization
of the density [45,46] due to the strong long-range
repulsion between the particles. One can see how the
KS-SCP densities show this structure as well, and that they
become closer to the exact ones as the strength of the
interaction increases. The capacity of the KS-SCP approach
for going beyond the mean-field description is clear from
the case d ¼ 8, where the GP density is way too diffuse
(for larger d we could not even get converged GP results
within our grid). It is remarkable that an approximate DFT
method is able to span (even if only qualitatively) a wide
range of different correlation regimes. Moreover, as any
DFT approach, the formalism is amenable to corrections:
exchange effects, for example, could be included in the
SCP functional in order to capture the fermionized regime.

l⊥=0.4 KS-SCP B
KS-SCP F
CI B
CI F
GP

n(
x)

 (
a.

u.
)

x (a.u.)

N=4
lx=4

d=0.1

d=1 d=8

d=20 d=50

d=0.01 θ=90ο

FIG. 1 (color online). Densities for N ¼ 4 dipoles in a Q1D
geometry as a function of the dipole moment d. The different
results correspond to the KS-SCP DFT (dashed), CI (solid), and
GP approaches (dotted). The red lines correspond to fermions and
the black ones to bosons. For d ¼ 20 and 50 we could not obtain
converged GP solutions. Notice that some of the curves are on top
of each other and therefore hardly visible.
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Notice that while full CI calculations almost reached the
maximum number of particles that can be treated, the
computational cost of the KS-SCP method in one dimen-
sion is similar to that of the usual KS-LDA.
The total energies corresponding to the different cases of

Fig. 1 are reported in Table I. One can see how the KS-SCP
becomes increasingly accurate in the weakly and strongly
correlated regime, while being less reliable in the inter-
mediate regime (but still better than GP). Asymptotic
exactness as d → ∞ is mathematically guaranteed [22,26],
but we could not converge the CI results for N ¼ 4
beyond d ¼ 50. From the experimental point of view, a
more potentially relevant quantity are the so-called addition
energies [55], which correspond to the second difference in
total energies, Δ2EðNÞ ¼ EðN þ 1Þ þ EðN − 1Þ − 2EðNÞ.
Within KS-DFT, this quantity can also be obtained from
the highest-occupied (HO) Kohn-Sham eigenvalues as
εHOðN þ 1Þ − εHOðNÞ [27]. The obtained results show
good agreement between the CI and the KS-SCP appro-
aches, particularly for the strongly interacting regime: for
example, already for d ¼ 8 we obtain with the KS-SCP
approach 0.21 for fermions and 0.20 for bosons, against the
value 0.22 obtained in both cases with CI, and the value
2.94 for the bosonic case with GP.
Finally, in Fig. 2 we show the KS-SCP densities for

Q2D systems with N ¼ 12 particles, considering the dipole
moments to be perpendicularly aligned with the plane of
motion,andsetting10lz ¼ l⊥ ¼ lx ¼ ly ¼ 1. Similarly, as in
theQ1DcaseofFig.1,onecanseehowtheKS-SCPmethodis
able to span the range between the weakly and the strongly
interacting regimes. In this latter case, one can observe the
formation of two characteristic concentric rings, visible as
maxima in the radial density distribution in Fig. 2, in good
agreementwith theQMCcalculationsperformedinRef. [56],
which were, however, limited to the bosonic case.
Conclusions.—In this Letter we have suggested an

exchange-correlation functional for the application of
Kohn-Sham DFT to ultracold bosonic and fermionic
dipolar and ionic gases. The functional can be improved
with rigorous corrections [23,57]. For example, we have
checked that simply adding at a postfunctional level the
next leading term (“zero-point-energy” correction [57,58])
to the energies of Table I largely improves the results: for
N ¼ 4 bosons and d ¼ 50 our energy changes from 4.59 to

4.82 (the CI one is 4.85). In future works we will address
the inclusion of this and also higher-order corrections in a
systematic way. In particular, for the bosonic case the fact
that the kinetic energy can be written as an explicit density
functional will allow us to directly minimize the total
energy including such corrections.
The results show the potential of strictly correlated-based

density functionals for thestudyofultracolddipolarand ionic
gases, where only little progress has been made in the
application of density-functional methods [59] compared
to ultracold atomic systems with short-ranged interactions.
Theuniquepropertiesandhightunabilityof thedipole-dipole
interaction have been shown to be potentially useful for the
study of many interesting phenomena, as well as for several
practical applications. Their investigationwith density-func-
tionalmethodsmightopennewpossibilities, especiallywhen
generalized to the time domain (which is the object of
ongoing work). Even if QMC calculations might be done
for thousands of bosons [60,61], the low computational cost
and the black-box nature of the KS-SCP approachmakes it a
veryusefulalternativewhenlargenumbersofcalculationsare
required (e.g., for the construction of phase diagrams as a
functionofmanydifferentsystemparameters).Thepresented
method can be applied to systems with other external
potentials, such as the interesting case of 1D optical lattices,
as well as generalized to different interactions. In this sense,
one interesting possibility could be the recently discussed
quadrupolar interactions, which may lead to intriguing new
quantumphases (seeRefs. [62–64]). These topicswill be the
object of future works.
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TABLE I. Total energies corresponding to Fig. 1 obtained with
the KS-SCP DFT, CI, and GP approaches.

d Energies (N ¼ 4, Bosons=Fermions)

KS-SCP CI GP

0.01 0.125=0.500 0.125=0.500 0.126/-
0.1 0.128=0.500 0.159=0.500 0.172/-
1 0.250=0.540 0.583=0.590 2.130/-
8 0.943=1.107 1.400=1.400 35.03/-
20 2.237=2.268 2.512=2.512 � � �
50 4.591=4.597 4.854=4.854 � � �
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FIG. 2 (color online). KS-SCP densities for bosonic (black) and
fermionic (red) systems in a Q2D geometry for N ¼ 12 in the
weakly (top) and strongly correlated (bottom) regimes.
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