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a b s t r a c t

We present a fast algorithm to calculate Coulomb/exchange integrals of prolate spheroidal
electronic orbitals, which are the exact solutions of the single-electron, two-center Schrö-
dinger equation for diatomic molecules. Our approach employs Neumann’s expansion of
the Coulomb repulsion 1/jx � yj, solves the resulting integrals symbolically in closed form
and subsequently performs a numeric Taylor expansion for efficiency. Thanks to the gen-
eral form of the integrals, the obtained coefficients are independent of the particular wave-
functions and can thus be reused later.

Key features of our algorithm include complete avoidance of numeric integration, draft-
ing of the individual steps as fast matrix operations and high accuracy due to the exponen-
tial convergence of the expansions.

Application to the diatomic molecules O2 and CO exemplifies the developed methods,
which can be relevant for a quantitative understanding of chemical bonds in general.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The two-center electronic Schrödinger equation is a natural starting point to study diatomic molecules or chemical bonds.
It is well known that it separates in prolate spheroidal coordinates. Thus, the corresponding single-electron orbitals can be
calculated efficiently. For several electrons, however, the tedious inter-electron Coulomb repulsion integrals have impeded a
widespread use of these orbitals so far. To alleviate these difficulties, we present an efficient algorithmic framework in this
paper.

In the computational chemistry literature, linear combination of atomic orbitals (LCAO) is the most common approach to
construct electronic wavefunctions for molecules. It dates back to the early days of quantum mechanics [1]. In the seminal
paper [2], Boys proposed Gaussian-type atomic orbitals since the necessary integrals can be explicitly evaluated. Hence they
are widely used in modern computational chemistry software packages. Nevertheless, only the exact single-electron sphe-
roidal orbitals are – by definition – precise for any distance of the atomic nuclei. This fact is an important advantage for
studying diatomic molecules and chemical bonds.

An interesting alternative approach to diatomic molecules is the Holstein–Herring method [3–6] for calculating exchange
energies of Hþ2 -like molecular ions. This method has recently been extended to two-active-electron systems [7]. However, it
is not suitable for an arbitrary number of valence electrons.

Another common approach first proposed by Hylleraas [8] for the helium atom includes the inter-electron distance rij as
independent variable into the electronic wavefunction. Thus, the pairwise electronic Coulomb cusp is handled explicitly,
. All rights reserved.
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Fig. 1. Spatial arrangement of a single electron bound to two atomic nuclei.
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which reduces the number of required wavefunctions. James and Coolidge [9] have applied this method to the H2 molecule
using spheroidal coordinates, which still serves as starting point for modern benchmark calculations. Ref. [10] contains an
extension to the Heþ2 and He2 molecule, and a modern review can be found in [11].

Ref. [12] is part of a series which provides an extensive discussion of Gaussian basis sets for molecular calculations, and
specifically computes the total energy and dissociation energy of O2.

Ref. [13] employs Kohn–Sham density functional theory for diatomic molecules in (discretized) spheroidal coordinates. In
particular, the authors apply their method to calculate the ground state energy of carbon monoxide CO.

The basic setup of prolate spheroidal orbitals employed in the current paper has been developed in Refs. [14,15] and ap-
plied to molecules with up 4 electrons. Our contribution is a reformulation into an efficient computational framework,1

which allows for an extension to many more electrons. For example, the oxygen dimer O2 contains 16 electrons.
Outline: Section 2 provides the details of the single-electron Schrödinger equation for atomic dimers in prolate spheroidal

coordinates. Our presentation is based on the series [14,15], and additionally includes a ‘‘best match’’ mapping to the com-
mon LCAO molecular orbitals. Section 3 contains the main abstract mathematical contribution of this paper: we prove a
recurrence relation to efficiently multiply function expansions in terms of associated Laguerre polynomials, and solve several
integrals symbolically in closed form. These results (combined with Neumann’s expansion of 1/jx � yj into Legendre polyno-
mials) are the basis of our algorithm. It is described in detail in Section 4, including cost analysis and error estimation. Sec-
tion 5 contains the application of the algorithm to the CO and O2 molecule, which is particularly interesting among atomic
dimers due to its paramagnetism.

2. Single-electron Schrödinger equation for atomic dimers

This section introduces the single-electron quantum mechanical framework, which serves as starting point for the many-
electron calculations in Section 4. We basically follow the discussion in Refs. [14,15].

Separation in prolate spheroidal coordinates. The single-electron, two-center Schrödinger equation for a Hþ2 -like molecular
ion in atomic units (Born–Oppenheimer approximation) reads
1 The
�1
2

D� Za

ra
� Zb

rb

� �
w ¼ Ew: ð2:1Þ
Here, ra and rb denote the distances to the fixed nuclei at (0,0, � R/2), respectively, and Za; Zb 2 N>0 the nuclear charges (see
Fig. 1). The distance R between the nuclei is also called bond length in the chemistry literature. We have omitted the repulsive

interaction of the nuclei ZaZb
R

� �
for now to focus on the electronic energy, but will include it into the total energy later. In what

follows, we set Z :¼ ZaþZb
2 and Dq :¼ (Za � Zb) R (w.l.o.g. Dq P 0). The homonuclear case corresponds precisely to Za = Zb � Z

and Dq = 0.
It is well known that Eq. (2.1) is separable in prolate spheroidal coordinates (n,g,u) defined by
n :¼ ðra þ rbÞ=R; n P 1
g :¼ ðra � rbÞ=R; g 2 ½�1;1�
and the Ansatz
wðn;g;uÞ ¼ KðnÞSðgÞ eimuffiffiffiffiffiffiffi
2p
p : ð2:2Þ
m 2 Z is the eigenvalue of the angular momentum operator Lz ¼ �i@u, which commutes with the Hamiltonian on the left
hand side of (2.1) due to the azimuthal symmetry about the internuclear axis. In the following, we set l:¼jmj to shorten
notation.
complete source code of our implementation is available online at [16] (in the mathematica/diatomic subfolder).
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Plugging (2.2) into (2.1) leads to coupled ODEs for the radial part K(n) and angular part S(g). The latter reads
2 Spe
spheroi
@

@g
ð1� g2Þ @

@g

� �
þ ðp2 � AÞ|fflfflfflfflffl{zfflfflfflfflffl}

kl
‘
ðip;DqÞ

�Dqgþ ðipÞ2ð1� g2Þ � l2

1� g2

2664
3775SðgÞ ¼ 0; ð2:3Þ
where the ‘‘energy parameter’’ p 2 R>0 is defined via the energy E,
E ¼: �2ðp=RÞ2; ð2:4Þ
and A is an eigenvalue of the operator G (defined in [14]). For the purpose of this paper, we simply regard A as separation
constant. In the homonuclear case D q = 0, Eq. (2.3) is well know as the angular spheroidal wave equation [17–20] when
we identify (p2 � A) as spheroidal eigenvalue kl

‘ ðipÞ. Successive ‘ = l,l + 1,. . . label the discrete set of eigenvalues for which
(2.3) has a normalizable solution.

Since E is finite, p ? 0 in the united atom limit R ? 0, and (2.3) reduces to Legendre’s differential equation. Then
limR!0G ¼ �L2 (angular momentum operator) with eigenvalue A ¼ �kl

‘ ð0Þ ¼ �‘ð‘þ 1Þ. However, except for this special case,
‘ is no valid quantum number since L2 does not commute with the Hamiltonian in general.

The homonuclear solution SðgÞ � Sl
‘ ðip;gÞ is already built into Mathematica2 and could thus be plugged into (numeric)

integrals. Nevertheless, in order to use some properties of Legendre polynomials later and cover the heteronuclear case also,
we employ the series expansion
Sl
‘ ðip;Dq;gÞ ¼

X1
k¼l

cl
‘;kðp;DqÞ 2kþ 1

2
ðk� lÞ!
ðkþ lÞ!

� �1=2

Pl
k ðgÞ: ð2:5Þ
Plugged into (2.3) results in a three-term recurrence relation for the coefficients cl
‘;kðpÞ � cl

‘;kðp;0Þ (homonuclear) and a five-
term recurrence relation for cl

‘;kðp;DqÞ (heteronuclear) [18,14]. Namely, in the homonuclear case, only integers k with the
same parity as ‘contribute to the sum due to symmetry. After truncating this expansion (which is justified due to the expo-
nential decay of the coefficients), it may be rewritten as eigenvalue equation (see also [21])
Flðp;DqÞ c¼! k c; c � cl
‘;kðp;DqÞ

� �
k
; k � kl

‘ ðip;DqÞ ð2:6Þ
with a symmetric matrix Fl(p,Dq). This matrix is tridiagonal in the homonuclear case (after proper relabeling) and pentadi-
agonal in the heteronuclear case. Note that fast eigenvalue solvers exist particularly for tridiagonal matrices. We adopt the
normalization scheme used by [18] and Mathematica, namely
Z 1

�1
Sl
‘ ðip;Dq;gÞ2dg ¼

X1
k¼l

cl
‘;kðp;DqÞ

��� ���2¼! 2
2‘þ 1

ð‘þ lÞ!
ð‘� lÞ! : ð2:7Þ
The energy parameter p couples (2.3) to the radial equation
@

@n
ðn2 � 1Þ @

@n

� �
� ðp2 � AÞ|fflfflfflfflffl{zfflfflfflfflffl}

kl
‘
ðip;DqÞ

þ2 ZRnþ ðipÞ2ðn2 � 1Þ � l2

n2 � 1

2664
3775KðnÞ ¼ 0: ð2:8Þ
This is the radial spheroidal differential equation except for the 2 Z R n term, and formally resembles (2.3) apart from n P 1
versus jgj 6 1. We determine p numerically as follows.

First, define Hylleraas functions via associated Laguerre polynomials as
Hl
k ðxÞ :¼ xl=2e�x=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k!=ðkþ lÞ!

q
Ll

k ðxÞ; k;l 2 N0:
This choice precisely incorporates the orthogonality relation for Laguerre polynomials, such that
Z 1

0
Hl

k0
ðxÞHl

k ðxÞdx ¼ dkk0 : ð2:9Þ
Given a sequence d � (dk)kP0, we set
Hl
d ðxÞ :¼

X1
k¼0

dk Hl
k ðxÞ: ð2:10Þ
(Note that k starts at 0 instead of l as in (2.5).) Employing such an expansion for the radial wavefunction,
KðnÞ ¼ Hl
d ð2p ðn� 1ÞÞ ð2:11Þ
cifically, the implementation [20] has been integrated into Mathematica as SpheroidalPS[n,m,c,z] and SpheroidalQS[n,m,c,z] for the angular
dal function of the first and second kind, respectively.
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Fig. 2. Laguerre expansion coefficients of the (‘,m) = (0,0) groundstate radial wavefunction (see equations (2.10) and (2.11)). The exponential decay of the
coefficients justifies the truncation of the expansion.
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results in a three-term recursion formula [14] for the to-be determined coefficients dk. They will turn out to decay
exponentially, as illustrated in Fig. 2. Hence we can truncate the expansion and rewrite the recurrence relation as matrix
equation [14]
ðBlðpÞRlðp; kÞ þ p l2IÞd¼! 0; k � kl
‘ ðip;DqÞ: ð2:12Þ
Both Rl and Bl are symmetric tridiagonal matrices, and I denotes the identity matrix. The left hand side is singular for a dis-
crete set of values p only. This condition finally determines p and the energy E. Ref. [14] employs a Newton iteration to obtain
both p and A simultaneously, such that the matrices in (2.12) and Fl � k I in (2.6) have zero determinants. An improved ver-
sion uses the so-called Killingbeck method [22,23]. In our case, we apply a numerical root search algorithm over p such that
an eigenvalue of the matrix in (2.12) becomes zero.

Considering the starting point of the numerical iteration, [14] uses p0 = Z R/n, which becomes exact in the unified atom
limit R ? 0 and is thus valid for small Z R. Here, n labels successive eigenvalues as in the unified atom limit. Alternatively, we
have identified p0 = Z R/(2n) as reliable candidate for large values of Z R, which stems from the dissociation limit R ?1
(hydrogen-like atom plus isolated nucleus).

Fig. 3 shows the lowest few homonuclear energy levels in dependence of Z R, both with and without the (rescaled) nuclear
repulsion term 1/(Z R). In analogy to the molecular term symbol, we employ the notation
n‘2sþ1mg=u ð2:13Þ
to label states. In common notation, ‘ = 0,1,2,3,. . . is designated by s,p,d,f, . . ., respectively, and m = 0, ± 1, ± 2,. . . by
r, ± p, ± d, . . . . For fixed (‘,m), the ‘‘principal value’’ n = 1,2, . . . enumerates successive energy levels. In the homonuclear case,
the angular spheroidal wave function determines the parity (�1)‘ (reflection about the origin, x ? �x). It is written as gerade
(even) or ungerade (odd). We omit the spin variable s for now, which will become important for the many-electron calcu-
lations in Section 4.

Having the exact solution of the two-center Schrödinger equation available calls for a comparison with the popular LCAO
approach (linear combination of atomic orbitals). Fig. 4 tries to match the corresponding wavefunctions, taking parity and
ordering of energy levels into account. However, note that the suggestive ordering has to be interpreted with caution since
it depends on the nuclear distance R. For example, according to Fig. 3,
E1srg < E1pru ; E1pð�pÞu ; E2srg < E2pru ; . . .
for small nuclear distances R. This is different from the arrangement in Fig. 4.
2.1. Normalization

In what follows, we derive a formula for the required normalization factor of the wavefunction. The volume element in
prolate spheroidal coordinates equals dV = (R/2)3(n2 � g2) dndgdu. Thus
kwk2
L2 ¼ ðR=2Þ3

Z 1

1

Z 1

�1
KðnÞ2SðgÞ2ðn2 � g2Þdgdn:
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Fig. 3. Single-electron energy levels (Eq. (2.4)) of a Hþ2 -like homonuclear dimer with respect to Z R (nuclear charge � nuclear distance), in atomic units. The
bottom plot additionally includes the rescaled nuclear–nuclear repulsion term 1/(Z R). The unified-atom limit R ? 0 corresponds to a hydrogen-like atomic
ion with one electron, nuclear charge 2Z and energy levels �2Z2/n2, in agreement with the curves of the top subfigure. In the dissociation limit R ?1, the
dimer splits into a single hydrogen-like atom/ion and an isolated nucleus (H + p for Z = 1). Thus, the electronic energy levels converge to � 1

2 Z2=n2.
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The inner integral without the factor g2 is already solved in (2.7). To include g2, we use the identity
x � Pl
k ðxÞ ¼

kþ l
2kþ 1

Pl
k�1ðxÞ þ

k� lþ 1
2kþ 1

Pl
kþ1ðxÞ: ð2:14Þ
Thus, after taking into account the normalization factors in the expansion (2.5), we obtain
Z 1

�1
SðgÞ2 g2dg ¼ Xl

Legc
			 			2

; c � cl
‘;kðpÞ

� �
k
;

with the tridiagonal, symmetric matrix Xl
Leg given by
Xl
Leg;kk ¼ 0; Xl

Leg;k;kþ1 ¼
ðkþ 1� lÞðkþ 1þ lÞ
ð2kþ 1Þð2kþ 3Þ

� �1=2

; k ¼ l;lþ 1; . . .
We proceed analogously for the radial part. After a change of variables x :¼ 2p (n � 1) and due to the orthogonality (2.9), we
obtain
Z 1

1
KðnÞ2dn ¼ 1

2p
kdk2

;

where d contains the expansion coefficients in (2.11). To incorporate the factor n2, we employ the following well-known rela-
tion for Laguerre polynomials:
x � Ll
k ðxÞ ¼ �ðkþ 1ÞLl

kþ1ðxÞ þ ð2kþ lþ 1ÞLl
k ðxÞ � ðkþ lÞLl

k�1ðxÞ: ð2:15Þ
Thus, multiplying an expansion (2.10) by x yields
x � Hl
d ðxÞ ¼ Hl

d0
ðxÞ; d0 :¼ Xld ð2:16Þ



Fig. 4. Putative best match of the exact Hþ2 -like electronic wavefunctions (labeled n‘mg/u in boldface blue) with the LCAO-MOs (molecular orbitals built
from linear combinations of atomic orbitals) widely used in the literature (see e.g., [24]). In particular, the parity (reflection about the origin, x ? �x) agrees
in each instance. Orbitals are schematically drawn in red, and antibonding MOs are marked by a star (⁄). (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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with the tridiagonal, symmetric matrix Xl
Lag defined by
3 I am
Xl
Lag;kk ¼ 2kþ lþ 1; Xl

Lag;k;kþ1 ¼ �ððkþ 1Þðkþ lþ 1ÞÞ1=2
; k ¼ 0;1; . . .
Plugging (2.16) into the following integral yields
Z 1

1
KðnÞ2 n2dn ¼ 1

2p
I þ ð2pÞ�1Xl

Lag

� �
d

			 			2
Assembling the radial and angular contributions finally results in
kwk2
L2 ¼ ðR=2Þ3

2p
kck2 dþ ð2pÞ�1Xl

Lagd
			 			2

� Xl
Legc

			 			2
kdk2

� �
:

That is, we obtain the correct normalization factor directly from the expansion coefficients c and d.
Dissociation limit R ?1. From a physical point of view, separating the nuclei from each other should yield a hydrogen-like

atom/ion plus an isolated nucleus. However, in the homonuclear case, the symmetry properties of the electronic wavefunc-
tions (w(x) = (�1)‘w(�x) due to parity) imply that the electronic charge is equally distributed to both nuclei. This seeming
contradiction can be reconciled by constructing superpositions of even and odd wavefunctions to obtain the well-known
hydrogen-like wavefunctions, localized at either one or the other nucleus. (Note that conversely, the LCAO approach uses
linear combinations of atomic orbitals as molecular wavefunctions.).

From the above arguments, we expect the energy levels to converge to � 1
2 Z2=n2 in the limit R ?1, as indicated in Fig. 3.

Along with it comes a heuristic understanding of the convergence rate.3 Each ‘‘half’’ electron localized at a nucleus experiences
an additional attraction from the respective other nucleus. This adds up to the net attraction energy
�0:5� Z
R

� 0:5� Z
R

¼ � Z
R
: ð2:17Þ
grateful to Gero Friesecke for helpful discussion regarding this point.
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Subtracting this correction term (which of course vanishes as R ?1) from the energy E leads to exponential (instead of alge-
braic) convergence, as shown in Fig. 5. Namely, the electronic charge distributions decay exponentially with distance from
the nuclei, implying a likewise decay of the error.

3. Properties of Laguerre expansions

This technical section is based on function expansions in terms of associated Laguerre polynomials (see Eq. (2.10)). We
develop a computational framework for multiplying these expansions, and derive analytic solutions of integrals appearing
in Section 4.

3.1. Products of Laguerre expansions

We want to solve the following task: Given integers m1;m2 2 Z and exponentially decaying sequences (d1,k), (d2,k), calcu-
late the sequence (dk) satisfying
Hjm1 j
d1
ðxÞ � Hjm2 j

d2
ðxÞ¼! Hjm1�m2 j

d ðxÞ: ð3:1Þ
For conciseness of notation, let li:¼jmij, i = 1, 2 and l3:¼jm1 �m2j, and assume without loss of generality that l1 P l2.
Depending on the signs of m1 and m2, we have l3 = l1 ± l2. The orthogonality relation of Laguerre polynomials leads to
dk ¼ d2jPl
k d1


 �
; k ¼ 0;1;2; . . . ð3:2Þ
with the symmetric matrix Pl
k � ða

l
ijkÞij given by
al
i :¼

Z 1

0
Hl1

i1
ðxÞHl2

i2
ðxÞHl3

i3
ðxÞdx ¼

Y3

k¼1

ik!

ðik þ lkÞ!

 !1=2

�
bl

i ð3=2Þ if l3 ¼ l1 � l2

~bl
i ð3=2Þ if l3 ¼ l1 þ l2

(
ð3:3Þ
In the above expression:
bl
i ðzÞ :¼

Z 1

0
xl1 Ll1

i1
ðxÞLl2

i2
ðxÞLl3

i3
ðxÞe�zxdx; ð3:4Þ

~bl
i ðzÞ :¼

Z 1

0
xl1þl2 Ll1

i1
ðxÞLl2

i2
ðxÞLl3

i3
ðxÞe�zxdx ð3:5Þ
defined for z 2 R>0. Using the recurrence relation
xlLl
i ðxÞ ¼ ðiþ lÞxl�1Ll�1

i ðxÞ � ðiþ 1Þxl�1Ll�1
iþ1 ðxÞ;
the integrals (3.4) and (3.5) can be reduced to the following proposition, which is a generalization of [25].

Proposition 1. Given fixed integers l 2 N3
0 , the coefficients
cl
i ðzÞ :¼

Z 1

0
Ll1

i1
ðxÞLl2

i2
ðxÞLl3

i3
ðxÞe�z xdx; z 2 R>0 ð3:6Þ
defined for i 2 N3
0 obey the recurrence relation
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cl
i ðzÞ ¼ �ð1=z� 1Þ cl

i1�1;i2 ;i3
ðzÞ þ cl

i1 ;i2�1;i3
ðzÞ þ cl

i1 ;i2 ;i3�1ðzÞ
� �

þ ð2=z� 1Þ cl
i1 ;i2�1;i3�1ðzÞ þ cl

i1�1;i2 ;i3�1ðzÞ þ cl
i1�1;i2�1;i3

ðzÞ
� �

� ð3=z� 1Þcl
i1�1;i2�1;i3�1ðzÞ þ

1
z

Y3

k¼1

lk � 1þ ik

ik

� �
ð3:7Þ
with the convention that cl
i ðzÞ ¼ 0 if any i1, i2,i3 < 0 and i� 1

i

� �
¼ d0i for integer i P 0.

Thus, cl
i ðzÞ can iteratively be calculated and stored for later usage. Note that the coefficients c0

i ðzÞ are symmetric in i1,i2,i3.
The case z = 1 and l = 0 is handled in [25] (with a sign typo in his Eq. (7)). From the particular form of the binomial coeffi-
cients in (3.7) it follows that the recurrence relation is homogeneous precisely if any lk = 0.

Proof. A derivation of (3.7) proceeds along the same lines as in [25], involving generating functions of Laguerre polynomials.
More specifically, using
X1

i¼0

Ll
i ðxÞð�tÞi ¼ ext=ð1þtÞ

ð1þ tÞlþ1 ;
the following formal series in t1, t2, t3 fulfills
Gl t1; t2; t3; zð Þ :¼
X1

i1 ;i2 ;i3¼0

cl
i ðzÞ

Y3

k¼1

�tkð Þik ¼ z�1

Q3
k¼1 1þ tkð Þ�lk

1� p t1; t2; t3; zð Þ ð3:8Þ
with
pðt1; t2; t3; zÞ :¼ ð1=z� 1Þðt1 þ t2 þ t3Þ þ ð2=z� 1Þðt1t2 þ t1t3 þ t2t3Þ þ ð3=z� 1Þt1t2t3:
Applying the identity 1/(1 � x) = 1 + x/(1 � x) for x = p(t1, t2, t3,z) to the right hand side of (3.8) leads to
Glðt1; t2; t3; zÞ ¼ pðt1; t2; t3; zÞGlðt1; t2; t3; zÞ þ
1
z

Y3

k¼1

ð1þ tkÞ�lk :
Now comparing coefficients of ti1
1 ti2

2 ti3
3 gives Eq. (3.7). h

Numeric experimentation suggests that c0
i ðzÞ is bounded asymptotically (jij?1) if and only if z P 3/2. As illustration,

Fig. 6 shows the central coefficient c0
i;i;ið3=2Þ, which alternates its sign depending on the parity of i. As heuristic explanation

of the asymptotic behavior, we focus on the central coefficient c0
i;i;iðzÞ and set
~c3iðzÞ :¼ c0
i;i;iðzÞ; ~c3i�1ðzÞ :¼ c0

i�1;i;iðzÞ; ~c3i�2ðzÞ :¼ c0
i�1;i�1;iðzÞ:
Plugged into (3.7) and letting k :¼ 3i gives
~ckðzÞ ¼ �3ð1=z� 1Þ~ck�1ðzÞ þ 3ð2=z� 1Þ~ck�2ðzÞ � ð3=z� 1Þ~ck�3ðzÞ:
This equation is only correct if k is a multiple of 3. Nevertheless, interpreted as difference equation yields the companion
matrix
20 40 60 80 100 i

0.05

0.05

ciii
0 3 2

Fig. 6. Asymptotic behavior of the central coefficient c0
i;i;ið3=2Þ defined in (3.6), which oscillates between positive and negative values.
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Z ¼

0 1 0

0 0 1

�ð3=z� 1Þ 3ð2=z� 1Þ �3ð1=z� 1Þ

0BB@
1CCA
with eigenvalues {1,1,�(3/z � 1)}. Thus, the spectral radius q(Z) 6 1 precisely if z P 3/2.
We add the following observation: the homogeneous recurrence relation may be interpreted as a differential equation in

3 dimensions by treating the indices i as continuous variables, cl
i ðzÞ � f l

z ðiÞ, and taking the continuity limit. Namely, without
the inhomogeneous contribution, (3.7) becomes
0¼! 1

h2 �ð1=z� 1Þ f l
z i� ðh;0;0Þð Þ þ f l

z i� ð0;h;0Þð Þ þ f l
z ði� ð0;0; hÞÞ

� �
þ ð2=z� 1Þ f l

z i� ð0; h; hÞð Þ
�

þ f l
z i� ðh;0; hÞð Þ þ f l

z i� ðh; h; 0Þð Þ

�ð3=z� 1Þf l

z i� ðh;h;hÞð Þ � f l
z ðiÞ

�
¼ �1

z
@i2 i3 þ @i1 i3 þ @i1 i2

� 
f l
z ðiÞ

þ 3
2z
� 1

� �
@i1 i2 i3 f l

z ðiÞ þ Oðh2Þ:
Here we have already used
@i2 i3 þ @i1 i3 þ @i1 i2

� 
f l
z ðiÞ ¼ 0
to simplify the OðhÞ term, which disappears precisely for z = 3/2.

3.2. Argument rescaling

Given any fixed y 2 R>0, we try to re-express Laguerre expansions (2.10) evaluated at the scaled coordinates y x as expan-
sions evaluated at x. First note the following well-known identity for k;l 2 N0:
Ll
k ðyxÞ ¼ yk

Xk

i¼0

ð1=y� 1Þk�i kþ l
iþ l

� �
Ll

i ðxÞ for y 2 R>0: ð3:9Þ
Similarly, a direct calculation shows that for all y – 0,
Xk

i¼0

ð1� yÞk�iLl
i ðy xÞ ¼ yk

Xk

i¼0

ð1=y� 1Þk�i kþ lþ 1
iþ lþ 1

� �
Ll

i ðxÞ: ð3:10Þ
Due to (3.9), for any exponentially decaying sequence d:¼(dk)kP0 it holds that
Hl
d ðy xÞ ¼ yl=2e�ðy�1Þx=2 Hl

d0
ðxÞ; d0 :¼ Sl

y d ð3:11Þ
with the upper triangular matrix Sl
y � sl

ikðyÞ
� 

defined by
sl
ikðyÞ :¼ k!

i!
ðiþ lÞ!
ðkþ lÞ!

� �1=2

ykð1=y� 1Þk�i kþ l
iþ l

� �
for i 6 k
and sl
ikðyÞ ¼ 0 otherwise.

This result can be combined with the operation (3.1), as follows. Assume we are given l 2 N3
0 with l3 = l1 ± l2, as well as

z1; z2 2 R>0 and two exponentially decaying sequences d1,d2. Set z:¼(z1 + z2)/2 and use (3.2) to calculate the sequence
d � (dk)kP0:
dk :¼ z01
� l1=2 z02

� l2=2 Sl2
z02

d2jPl
k Sl1

z01
d1

D E
; z0i :¼ zi=z:
Then, combining (3.1) with (3.11) gives
Hl1
d1
ðz1 xÞ Hl2

d2
ðz2 xÞ ¼ Hl3

d ðz xÞ: ð3:12Þ
Note that the exponential functions on both sides match. Summarizing, we have obtained the product of two Laguerre
expansions with rescaled arguments.

As slight variation of (3.11), given y 2 R>0 and an exponentially decaying sequence d, we try to find a sequence d0 such
that
Hl
d ðy xÞ¼! Hl

d0
ðxÞ: ð3:13Þ
Due to the orthogonality relation (2.9), we have to compute the following integral for integers i,k P 0. Using Eqs. (3.9) and
(2.9) leads to
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Z 1

0
Hl

i ðxÞH
l
k ðy xÞdx ¼ 2

yþ 1
2
ffiffiffi
y
p

yþ 1

� �l iþ l
l

� �1=2 kþ l
l

� �1=2

� ð�1Þk y� 1
yþ 1

� �iþk

2F1 �i;�k; 1þ l;� 4y

ðy� 1Þ2

 !

with the Gaussian hypergeometric function 2F1.

3.3. Integral identities

We derive analytic solutions of integrals originating from Neumann’s expansion of 1/jx � yj in terms of Legendre func-
tions (see Eq. (4.2) below).

Proposition 2. For any y; z 2 R>0 and integers k, l P 0, it holds that
Z z

0
Ll

k ðy xÞ e�xdx ¼ ð1� yÞk � Ll
k ðy zÞ e�z þ

Xk�1

i¼0

ð1� yÞk�1�i y Ll
i ðy zÞ e�z þ

iþ l
iþ 1

� �� �
: ð3:14Þ
Proof. First note that for y = 1, Eq. (3.14) simplifies to 1 � e�z for k = 0 and
Z z

0
Ll

k ðxÞ e�xdx ¼ Ll
k�1ðzÞ � Ll

k ðzÞ
� 

e�z þ
kþ l� 1

k

� �
for k P 1: ð3:15Þ
This identity can be proven by taking derivatives on both sides. Then, combining (3.9) and (3.10) (for k � 1) with (3.15) leads
to (3.14). h

For any integers l; k; ~k P 0, consider the nested integrals
tl
k~k

:¼ 1
2

Z 1

0
Ll

~k
ð~xÞ e�~x=2

Z ~x

0
Ll

k ðxÞ e�x=2dxd~x: ð3:16Þ
They have a surprisingly simple form for l = 0, 1:

Proposition 3. The integrals t0
k~k

in (3.16) are equal to
t0
k~k
¼

1 k ¼ ~k

2 ð�1Þkþ
~k k < ~k

0 k > ~k

8><>: t0
k~k

� �
¼

1 �2 2 �2
0 1 �2 2
0 0 1 �2 � � �
0 0 0 1

..

.

0BBBBBB@

1CCCCCCA;
and the integrals t1
k~k
t1
k~k
¼

ð�1Þ
~k k 6 ~k and k even

1 k > ~k and ~k even
0 otherwise

8>><>>: t1
k~k

� �
¼

1 �1 1 �1
1 0 0 0
1 0 1 �1 � � �
1 0 1 0

..

.

0BBBBBB@

1CCCCCCA:
Proof. These identities can be proven by applying Proposition 2 to the inner integral and using the orthogonality property of
the Laguerre polynomials. h

For the following paragraph, we state

Definition 4. Given integers l 2 N0 and 1 6 i 6 k, set
hl
kiðyÞ :¼

Xk

n¼i

ð�yÞn�i kþ l
nþ l

� ��
n

i

� �
; y 2 R: ð3:17Þ
Expressed in terms of generalized hypergeometric functions,
hl
kiðyÞ ¼

kþ l
iþ l

� �
3F2

1 1 i� k

; y

1þ i 1þ iþ l

0B@
1CA:
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Given z 2 R>0; y 2 R and integers k, l P 0, we set out to solve the integral
Z 1

0
Ll

k ðy xÞ e�x log 1þ z
x

� �
dx: ð3:18Þ
For that purpose, we decompose the logarithm into log (1 + x/z) � log (x/z). Considering the first term, integration by parts
and (3.14) give
Z 1

0
logð1þ x=zÞ Ll

k ðy xÞ e�xdx ¼
Z 1

0

1
xþ z

Ll
k ðy xÞdx� y

Xk�1

i¼0

ð1� yÞk�1�i
Z 1

0

1
xþ z

Ll
i ðy xÞe�xdx:
The integrals on the right hand side are solved by the following proposition:

Proposition 5. Let z 2 R>0 and y 2 R, then for all integers k, l P 0,
Z 1

0

1
xþ z

Ll
k ðy xÞ e�xdx ¼ Ll

k ð�y zÞ Cð0; zÞ ez � 1
z

Xk

i¼1

hl
kiðyÞ

ðy zÞi

i!
ð3:19Þ
with the incomplete gamma function C.
Proof. For k = 0, we obtain (via a computer algebra system)
Z 1

0

1
xþ z

e�xdx ¼ Cð0; zÞ ez
in agreement with the right hand side of (3.19). For k P 1, a change of variables yields
Z 1

0

1
xþ z

ðy xÞi e�xdx ¼
Z 1

0

1
xþ 1

ðy z xÞi e�z xdx ¼ ð�y zÞi di

dzi
Cð0; zÞ ez
for any integer i P 0. Thus, the integral (3.19) is a linear combination of the last term (i = 0, . . . ,k). The explicit formula on the
right hand side of (3.19) follows from a (rather tedious) calculation, using dz C(0,z) = �e�z/z. h

Concerning the second logarithm log (x/z) in the above decomposition, first note that
fiðzÞ :¼
Z 1

0
logðx=zÞ xi

i!
e�xdx ¼ Hi � ðcþ logðzÞÞ;
where c is Euler’s constant and Hi the ith Harmonic number. Namely, integration by parts yields the recurrence relation
fiðzÞ ¼
1
i
þ fi�1ðzÞ; i ¼ 1;2; . . . ;
and f0(z) = �(c + log (z)) can be shown by a computer algebra system. Thus, for all integers k, l P 0,
Z 1

0
logðx=zÞLl

k ðxÞ e�xdx ¼
Xk

i¼1

kþ l
iþ l

� �
ð�1ÞiHi �

kþ l� 1
k

� �
ðcþ logðzÞÞ:
Combining this equation with (3.9) yields the following generalization:

Proposition 6. Let z 2 R>0 and y 2 R, then for all integers k,l P 0,
Z 1

0
logðx=zÞLl

k ðy xÞ e�xdx ¼
Xk

i¼1

kþ l
iþ l

� �
ð�yÞiHi �

kþ l
k

� �
ð1� yÞk þ l

Xk

i¼1

k

i

� �
yið1� yÞk�i

iþ l

 !
ðcþ logðzÞÞ:
Hence we have collected all ingredients for solving the integral (3.18) in closed form.

We can now assemble the above results to calculate the nested integral
Z 1

0
Ll

~k
ð~xÞ e�~x=2 arcothð1þ ~x=zÞ

Z ~x

0
Ll

k ðxÞ e�x=2dxd~x; z 2 R>0 ð3:20Þ
for integers k; ~k;l 2 N0. Proposition 2 with y = 2 and a change of variables (2x ? x) gives the inner integral. Combined with
the Laguerre product coefficients cl

i ð1Þ in (3.6),
ð3:20Þ ¼ 2 ql
1;k

Z 1

0
Ll

~k
ð2xÞ e�x log 1þ z

x

� �
dx�

Xkþ~k

j¼0

ql
2;k~kj

Z 1

0
L0

j ðxÞ e�x log 1þ 2z
x

� �
dx
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with the integer (!) coefficients
ql
1;k :¼ ð�1Þk þ

Xk�1

i¼0

ð�1Þk�1�i iþ l
iþ 1

� �
;

ql
2;k~kj

:¼ cll0
k~kj
ð1Þ þ 2

Xk�1

i¼j�~k

ð�1Þk�icll0
i~kj
ð1Þ:
The two above integrals are precisely of the form (3.18), which completes the calculation of (3.20).
As last task of this section, given k;l 2 N0 and z 2 R>0, we try to compute the Laguerre expansion coefficients of
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ x
p Hl

k ðxÞ:
In other words, due to the orthogonality property of Laguerre polynomials, we have to calculate the integrals
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ x
p Hl

k ðxÞH
l
~k
ðxÞdx ð3:21Þ
for ~k ¼ 0;1; . . .. Employing the Laguerre product coefficients bll0
k~ki
ð1Þ from (3.4), the above integral can be reduced to a linear

combination of
wkðzÞ :¼
Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ x
p LkðxÞ e�xdx; z 2 R>0: ð3:22Þ
We can calculate these integrals iteratively for k = 0,1,2, . . . via the following

Proposition 7. The functions wk(z) obey the recurrence relation
wkðzÞ ¼ wk�1ðzÞ þ
z
ffiffiffi
z
p

k
d
dz

wk�1ðzÞffiffiffi
z
p ; k ¼ 1;2; . . . ð3:23Þ
with the starting value
w0ðzÞ ¼
ffiffiffiffi
p
p

erfcð
ffiffiffiffiffiffiffi
2 z
p

Þe2 z;
where erfc is the complementary error function.
Proof. The formula for w0(z) can be derived via a computer algebra system. Concerning the recurrence relation, first inte-
grate (3.22) by parts (x ? x/z) to obtain the alternative representation
wkðzÞ ¼
ffiffiffi
z
p Z 1

0

1ffiffiffiffiffiffiffiffiffiffiffi
2þ x
p Lkðz xÞ e�z xdx:
Applying the relation
d
dz

Lkðz xÞ e�z x ¼ kþ 1
z
ðLkþ1ðz xÞ � Lkðz xÞÞe�z x ð3:24Þ
to this representation gives the recurrence formula (3.23). The relation (3.24) follows from combining
d
dz

LkðzÞ e�z ¼ �
Xk

i¼0

LiðzÞ e�z with x � LiðxÞ ¼ �ðiþ 1ÞLiþ1ðxÞ þ ð2iþ 1ÞLiðxÞ � i Li�1ðxÞ: �
4. Coulomb and exchange integrals of prolate spheroidal orbitals

The computation of Coulomb interactions is often the most demanding task concerning multi-electron quantum systems.
In this section, we provide the details of an efficient algorithmic implementation, which employs analytically precomputed
integrals (from Section 3) and a subsequent Taylor expansion to speed up calculations, and avoids difficulties caused by an
alternative numeric approach. For example, we observe that the absolute value of the nested integrals in Eq. (4.9) is typically
much smaller than (the maximum over x) of the inner integral. This general effect could be explained by the orthogonality
property of Laguerre polynomials. In any case, analytically solving the nested integrals as a whole circumvents the numeric
difficulties caused by the blow-up of the inner integral.

Given square-integrable spatial ‘‘orbitals’’ a; b; c; d 2 L2ðR3;CÞ, we define the Coulomb integral (following standard nota-
tion) as
ðabjcdÞ :¼
Z

R6
aðx1Þbðx1Þ

1
jx1 � x2j

cðx2Þdðx2Þdx1x2;
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where � is the complex conjugation. In our setting, we want to calculate the concrete realization
Fig. 7.
Wavefu
(4.2) pa
constra
wn‘mwn0‘0m0 jw~n~‘ ~mw~n0 ~‘0 ~m0ð Þ ð4:1Þ
for single-electron wavefunctions wn‘m from Section 2. The labels n‘m, n0‘0m0, etc. are the ‘‘quantum numbers’’ in the molec-
ular term symbol (2.13).

To evaluate these Coulomb integrals in prolate spheroidal coordinates, we pursue the same approach as [14] and employ
Neumann’s expansion
1
jx1 � x2j

¼ 4
R

X1
s¼0

Xs

m¼0

ð�1Þm�m
2sþ 1

2
ðs� mÞ!
ðsþ mÞ!

� �2

Pm
sðn1ÞQ m

sðn2Þ � Pm
sðg1ÞP

m
sðg2Þ cos mðu1 �u2Þð Þ ð4:2Þ
with �0 = 1, �m = 2 for m > 0 and n1 < n2 (otherwise interchange n1 M n2). Pm
s and Q m

s are the Legendre functions of the first and
second kind, respectively. A derivation of (4.2) can be found in [26]. For the following, remember the volume element in pro-
late spheroidal coordinates, dV = (R/2)3(n2 � g2) dn dg du.

With (4.2) plugged into (4.1), the integrals over u1 and u2 result in
1

ð2pÞ2
Z 2p

0

Z 2p

0
cos mðu1 �u2Þð Þ e�iðm�m0 Þu1�i ~m� ~m0ð Þu2 du1du2 ¼

1=�m if m�m0 ¼ �ð ~m� ~m0Þ and m ¼ jm�m0j
0 otherwise

�
ð4:3Þ
Thus, the right hand side of (4.2) effectively contains the sum over s only, starting from s = m.
To approximate the infinite sum over s, we include all terms up to a threshold smax. This truncation is justified due to the

exponential convergence, as illustrated in Fig. 7.

4.1. Angular Coulomb integral

The expansion (4.2) admits a separation of the g1 and g2 integrals. Both are of the same form, so it suffices to restrict the
following presentation to the g1 integral. Taking into account the volume element, we have to calculate
Z 1

�1
Sl
‘ ip;Dq;gð ÞSl0

‘0 ip0;Dq;gð ÞPm
sðgÞ gjdg; ð4:4Þ
for j 2 {0,2}, where we have once again set l :¼ jmj and l0 :¼ jm0j. Since Sl
‘ ðip;0;gÞ and Pm

sðgÞ have parity (�1)‘+l and (�1)s+m,
respectively, it follows that in the homonuclear case, (4.4) is non-zero only if
‘þ lþ ‘0 þ l0 þ sþ m is even: ð4:5Þ
Plugging the expansion (2.5) into (4.4) results in a linear combination of integrals of the following form (see also [14, Appen-
dix D]), which are explicitly solved by Wigner 3j symbols:
1s 1s 1s 1s

1s 1p 1p 1s

1s 1s 1p 1p

1p 1p 1p 1p

1 2 3 4 5 6 7 8 9
max

10 4

0.001

0.01

0.1

1

trunc error

Estimated relative truncation error of the sum over s = m, . . . ,smax in the Neumann expansion (4.2), exemplified by the Coulomb integrals (4.1).
nctions are taken from Section 2 with R = 121 pm (experimental bond length of 16O2). The observed exponential convergence renders the expansion
rticularly useful. We have calculated the error by comparison with the sum up to s = 11. Only every second s contributes due to the symmetry
int (4.5) below, which explains the plateaus of the curves.
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1
2

Y3

i¼1

ð‘i � liÞ!
ð‘i þ liÞ!

� �1=2 Z 1

�1
Pl1
‘1
ðgÞPl2

‘2
ðgÞPl3

‘3
ðgÞdg ¼

‘1 ‘2 ‘3

0 0 0

� �
�

ð�1Þl2þl3
‘1 ‘2 ‘3

l1 �l2 �l3

� �
if l3 ¼ jl1 � l2j

ð�1Þl3
‘1 ‘2 ‘3

l1 l2 �l3

� �
if l3 ¼ l1 þ l2

8>>><>>>:

The equation is valid for non-negative integers l1, l2, l3, assuming (w.l.o.g.) l1 P l2. Given the Wigner 3j symbols, this is
much easier to calculate than Gaunt’s formula of the integral.

The factor gj in (4.4) for j = 2 can be incorporated by the identity (2.14) above.

4.2. Radial Coulomb integral

For conciseness of notation, we subsume the ‘‘quantum numbers’’ n‘m from (4.1) as i, and equivalently for i0, ~i and ~i0. The
radial contribution to the Coulomb integral is computationally much more challenging due to the dependence of whether
n1 < n2 or n1 P n2. Thus, the integrals over n1 and n2 cannot be separated any more; instead, we obtain the nested integrals
Z 1

1
K~iðn2ÞK~i0 ðn2ÞQ m

sðn2Þn
~j
2

Z n2

1
Kiðn1ÞKi0 ðn1ÞPm

sðn1Þ nj
1dn1dn2 þ ii0j$ ~i~i0~j

D E
ð4:6Þ
for j;~j 2 f0;2g due to the volume element.
The authors [14] apply an integral transformation (from Ref. [26]) to (4.6) and then solve the resulting integral numer-

ically. It consists of an outer integral over the product of two functions, which are themselves integrals. Although this ap-
proach inherently respects the symmetry k$ ~k, we haven’t found it computationally advantageous as compared to
solving (4.6) directly, since three integrals need to be calculated instead of two.

In the following, we provide the details of our approach. We employ the methods developed in Section 3 to evaluate (4.6).
As first (and most expensive) step, set pii0 :¼ ðpi þ pi0 Þ=2 and calculate dii0 via (3.12) such that
KiðnÞKi0 ðnÞ � Hl
di

2pi xð ÞHl0
di0

2pi0 xð Þ¼! Hm
dii0

2pii0xð Þ; x :¼ n� 1: ð4:7Þ
Proceed analogously for p~i~i0 and d~i~i0 . Finally, set pii0~i~i0 :¼ ðpii0 þ p~i~i0 Þ=2 and calculate coefficients bii0 ;b~i~i0 via (3.13) such that
Hm
dii0

2pii0 xð Þ¼! Hm
bii0

2pii0~i~i0 x
� 
(equivalently for b~i~i0 ). In case pii0 ¼ p~i~i0 , this step can be cut short by simply setting bii0 :¼ dii0 and b~i~i0 :¼ d~i~i0 . Then, after a change
of variables, the integral (4.6) (times the normalization factor (s � m)!/(s + m)! and for j;~j ¼ 0) equals
bii0 jBm
sðzÞ b~i~i0


 �
; z :¼ 2pii0~i~i0 ð4:8Þ
with the matrix Bm
sðzÞ � bm

s;k~kðzÞ
� �

k~k
defined by
bm
s;k~kðzÞ :¼ ðs� mÞ!

sþ mð Þ!

Z 1

0
Hm

~k
~xð ÞQ m

s 1þ ~x=zð Þ �
Z ~x

0
Hm

kðxÞP
m
sð1þ x=zÞdxd~xþ k$ ~k

D E
: ð4:9Þ
The factors nj
1 and n

~j
2 for j = 2 or ~j ¼ 2 in the integral (4.6) can be incorporated via Eq. (2.16), similar to the angular integral.

Thus, given the matrix Bm
sðzÞ, we have reduced the rather expensive integral (4.6) to the simple matrix formula (4.8). To

obtain Bm
sðzÞ, we have first precomputed the entries (4.9) symbolically in z as detailed below. Still, the resulting formulas are

quite extensive and preclude a fast numerical evaluation. Our remedy consists in a Taylor expansion of (the entries in) Bm
sðzÞ:
Bm
sðzÞ 	

Xnmax

n¼0

ðz� z0Þn

n!
BmðnÞ

s ðz0Þ: ð4:10Þ
We precompute the derivatives BmðnÞ
s symbolically (up to nmax = 8) and then evaluate them at (half)-integers

z0 = 1,1.5,2,2.5, . . .. Due to potential numeric cancellation effects, we employ high-precision arithmetic for this intermediate
step. Nevertheless, the entries of the resulting matrices Bm ðnÞ

s ðz0Þ are well-behaved and do not increase for higher values of n.
These numeric matrices are then stored on disk for later usage.

4.2.1. Error estimation
The sampling of half-integer evaluation points ensures that for each occurring z, there is a closest z0 with jz � z0j 6 1/4.

Thus, a very coarse error estimate of the Taylor expansion (4.10) gives an error of 10�11, when assuming that the individual
entries of BmðnÞ

s are in the order of 1, independent of n. In reality, we observe even better results, up to double floating-point
precision 10�16.

Until now, we have not yet discussed the truncation error of the Laguerre expansions. As illustrated in Fig. 2 above, we can
reach machine precision due to the exponential decay. However, the number of required coefficients depends on the partic-
ular decay parameters. When multiplying two expansions via (3.1), these numbers typically add up to give the number of
coefficients in the resulting expansion. Thus, in our setting, the coefficient vectors bii0 and b~i~i0 from the formula (4.8) have
approximately length 36.
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4.2.2. Cost analysis
Summarizing the above steps after precomputation, our algorithm only needs the numeric matrices BmðnÞ

s ðz0Þ from the Tay-
lor expansion (4.10) as input, instead of the symbolic integrals (4.9). In particular, no numeric integration is required.

The most expensive remaining step is the Laguerre expansion of the product KiðnÞKi0 ðnÞ in (4.7). Assuming that the expan-
sion vectors di and di0 have length K and the resulting vector dii0 length 2K, the operation (3.2) has to be performed 2K times,
leading to the asymptotic total cost OðK3Þ. In our setting, K is typically equal to 18. Since matrix operations are highly opti-
mized, the computation time is in the order of milliseconds on modern PCs.

4.2.3. Symbolic calculation of the integrals (4.9)
In what follows, we reduce (4.9) to the integrals (3.16), (3.19) and (3.20) (solved in Section 3.3). We focus on the relevant

cases m = 0,1,2, but our approach can easily be extended to higher m. In the simplest case s, m = 0, the integrals (3.20) and (4.9)
coincide since Q0(n) = arcoth (n). For general s, m, our strategy consists of ‘‘absorbing’’ the Legendre functions into the La-
guerre polynomials from Hm

k and Hm
~k by repeatedly applying Eq. (2.15) (multiplication by x).

First, remember that the Legendre function of the second kind splits into
Q m
sðnÞ ¼

Gm
sðnÞ

ðn2 � 1Þm=2 þ Pm
sðnÞ arcoth ðnÞ;
where Pm
sðnÞ is the Legendre function of the first kind and Gm

s a polynomial of order s � 1 + m.
Consider the case m = 0: since Ps(n) is actually a polynomial, repeated application of (2.15) allows us to write
LkðxÞPsð1þ x=zÞ ¼
Xkþs

i¼k�s

aksiðzÞLiðxÞ ð4:11Þ
with some coefficients aksi(z). Proceeding similarly with Gm
sð1þ x=zÞ, the integral (4.9) becomes as a linear combination of the

integrals (3.16) and (3.20).
The case m = 1 is more involved since Pm

sðnÞ is no polynomial any more, but consists of the factor (n2 � 1)1/2 � a polynomial
of order s � 1. To circumvent this difficulty, we first rewrite
H1
kðxÞP

1
sð1þ x=zÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2zþ x
p H1

kðxÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ x

p
P1

sð1þ x=zÞ:
A symbolic Laguerre expansion of the first factor (computed in (3.21), Section 3.3) transforms the right hand side to a linear
combination of
H1
i ðxÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zþ x

p
P1

sð1þ x=zÞ:
Plugging in the definition of H1
i ðxÞ, we obtain
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1=ðiþ 1Þ
q

L1
i ðxÞ e�x=2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xð2zþ xÞ

p
P1

sð1þ x=zÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
polyðxÞ

:

Since the second part is a polynomial in x, we can proceed as for m = 0. The same transformation works for Qm
sðnÞ as well,

which completes the case m = 1.
Finally, for m = 2, the decomposition (4.2) times the factor x (from H2

kðxÞ) reads
xQ2
sð1þ x=zÞ ¼ z2

2zþ x
G2

sð1þ x=zÞ þ x P2
sð1þ x=zÞ arcoth ð1þ x=zÞ:
After a transformation similar to (4.11), we conclude that the integral (4.9) can be reduced to a linear combination of the
integrals (3.20) and (3.19) (after a change of variables x ? x/2 and using the Laguerre product coefficients cl

i ð1Þ in (3.6)).

4.2.4. Testing the implementation
As first check, we calculate the following (homonuclear) Coulomb integral and obtain
w1srw1srjw1srw1srð Þ ¼ 0:780883 for R ¼ 1:4 a:u:; Za ¼ Zb ¼ 1
with summation up to smax = 9 in (4.2). This agrees to all digits with the tabulated value in Ref. [15]. Similarly, for the het-
eronuclear case (HeH+ molecular ion with Za = 2 and Zb = 1), we obtain (w1srw1srjw1sr w1sr) = 1.23207, which agrees in 4 dig-
its with the value 1.23225 from Ref. [15]. The discrepancy could stem from lower precision arithmetic in [15], or from a
different truncation of the Neumann expansion. We have verified all digits of our value using Mathematica’s numeric inte-
gration routines to solve the integrals (4.4) and (4.6) directly (which is much slower in this case), and by comparing the trun-
cations smax = 6,7,8,9 of the Neumann expansion (all agreeing in the first 7 digits).

For further testing, we have numerically computed the integrals (4.6) with several other parameters, and found that the
values agree in at least 12 digits.
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5. Application to diatomic molecules

To demonstrate the feasibility of our algorithmic approach, we apply it to the diatomic molecules O2 and CO.
The N-electron Hamiltonian for diatomic molecules in atomic units (Born–Oppenheimer approximation) reads
H ¼
XN

i¼1

�1
2

Di �
Za

ria
� Zb

rib

� �
þ
X
i<j

1
rij
þ ZaZb

R
; ð5:1Þ
where ria and rib denote the distances of the ith electron to the fixed nuclei at (0,0, � R/2), respectively, Za; Zb 2 N>0 the nu-
clear charges (as for the single electron Schrödinger Eq. (2.1)), and rij � jxi � xjj the inter-electron distance between electron i
and j. The first sum (denoted H0) contains precisely the single-electron Hamiltonian (2.1), the second sum is the inter-elec-
tron Coulomb repulsion (denoted Vee), and the last term the repulsion of the nuclei. The homonuclear version (Za = Zb :¼ Z)
describes atomic dimers like hydrogen H2 or oxygen O2.

Analogous to Ref. [27], it is instructive to investigate the limit of large nuclear charge Z. (We consider the homonuclear
case here for simplicity.) Namely, a short calculation shows that if Wðx1;r1; . . . ; xN;rNÞ 2 L2

aððR3 � f� 1
2gÞ

NÞ solves the N-elec-
tron Schrödinger equation HW = EW with H defined in (5.1), then the rescaled wavefunction
eW y1;r1; . . . ; yN ;rNð Þ :¼ Z�3N=2 W Z�1y1;r1; . . . ; Z�1yN;rN

� �

solves
eH0 þ
1
Z

Vee þ
1
R

� � eW ¼ E

Z2
eW; ð5:2Þ
with
eH0 :¼
XN

i¼1

�1
2

Di �
1

yi þ 1
2 ZRe3

�� ��� 1
yi � 1

2 ZRe3

�� ��
 !

:

As Z ?1, eH0 describes two isolated atoms and the electron–electron interaction 1
Z Vee becomes small due to the prefactor 1

Z.
Since eH0 depends on Z, we cannot repeat the exact same analysis as in Ref. [27], but our single-electron wavefunctions are
eigenfunctions of H0 nevertheless. Thus we expect that our calculations match highly-charged (electrically confined) molec-
ular ions well and could serve as benchmark for alternative computational approaches.

To allow for comparison with experimental data, we focus on the paramagnetic ‘‘triplet’’ oxygen molecule O2 in the fol-
lowing paragraph, i.e., Z = 8 and N = 16. The ground state symmetry is characterized by the molecular symbol 3R�g . That is, the
spin quantum number equals 1 (hence ‘‘triplet’’), the angular Lz momentum quantum number is zero (rotation about inter-
nuclear axis), and the parity is even.

The common textbook version of the electronic quantum state reads as follows. All molecular orbitals up to pu(2px,y) are
completely filled (see Fig. 4), leaving the two remaining electrons in the ‘‘antibonding’’ p
g ð2px;yÞ orbitals. These two elec-
trons form a spin triplet, hence the paramagnetism. With the mapping from Fig. 4, the electronic configuration corresponds
to the following Slater determinant:
W1 ¼ j1srg "# 1pru "# 2srg "# 2pru "# 1drg "# 1pð�pÞu "# 1dð�pÞg "i:
In what follows, we try to approximate the groundstate energy of O2 via the methods from the previous chapters, with
summation up to smax = 9 in the Neumann expansion (4.2). We include all wavefunctions of the 3R�g symmetry subspace,
restricted to configurations with the 1srg"; and 1pru"; orbitals completely filled, and the occupations of the higher orbitals
(up to 1fru";) allowed to vary. In our case, this gives 54 wavefunctions, including W1. For example, another state in the sym-
metry subspace reads
W2 ¼ j � � �1pð�pÞu " 1dð�pÞg "#i;
which is the same as W1 except for half-occupied 1p (±p)u molecular orbitals instead of 1d (±p)g.
Thus, the groundstate energy is the smallest eigenvalue of the 54 � 54 matrix hWijHWjii,j, with the Hamiltonian H defined

in (5.1). Since the Wi are exact eigenstates of the N-body Hamiltonian without the inter-electron Coulomb repulsion Vee, the
latter can be regarded as perturbation of (H � Vee) (see also Eq. (5.2)).

We use the software toolbox [16,28] to express hWijVeeWji as linear combination of Coulomb integral symbols (4.1), after
tracing-out the spin variables. The symmetry properties ( abjcd) = ( cdjab) and ðab j cdÞ ¼ ðba j dcÞ simplify the resulting
expressions. As concrete example, the following off-diagonal matrix element reads
W1jVeeW2h i ¼ w1ppu
w1dpg

jw1pð�pÞu w1dð�pÞg

� �
� w1ppu

w1dð�pÞg jw1pð�pÞu w1dpg

� �
:

Both diagonal entries hWijVeeWii (i = 1,2) are quite extensive, consisting of 79 individual Coulomb integrals.
Our approach can easily be adapted to other symmetry subspaces. Thus we include the experimentally next low-lying

symmetry levels 1Dg and 1Rþg as well (see for example Ref. [29] for an overview).
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The result of our calculations is plotted in Fig. 8, showing the electronic groundstate energy (blue dissociation curve) as
well as excited energy levels (purple and brown curves) dependent of the nuclear distance R. Our computation predicts an
optimal bond length Rmin = 2.325 a.u. (dotted red line), which is quite close to the experimental value from the literature
[30,31], Rexp(16O2) = 121 pm = 2.2866 a.u. (green line). Additionally, we reproduce the experimental ordering of the symme-
try states.

Having obtained the groundstate energy, we can calculate the dissociation energy O2 ? 2O by subtracting (2�) the en-
ergy of an individual oxygen atom. Since the outcome of theoretical calculations depends on the particular model (e.g.,
the Ansatz space of single-electron wavefunctions), similar models should be used for both the O2 molecule and the individ-
ual atoms. In our case, a close match regarding single atoms is Ref. [27] as already mentioned above. Namely, the authors use
hydrogen-like wavefunctions as Ansatz space and treat the inter-electron Coulomb repulsion as perturbation (similar to the
present study). Additionally, the electronic configurations match ours in the R ?1 limit (available atomic subshells 1s,
3
g

1
g

1
g

oxygen O2

1.8 2.0 2.2 2.4 2.6 2.8
R a.u.

133.7

133.6

133.5

133.4

133.3

133.2

Esingle Vee Z2 R a.u.

Fig. 8. Potential energy curves of the O2 molecule (this paper), i.e., lowest eigenvalue of the matrix hWijH Wji with the Hamiltonian H from (5.1) restricted
to the corresponding symmetry subspace. Dots are calculated values, and the continuous line a spline interpolation of degree 3. The min-
imum � 133.689 a.u. of the 3R�g symmetry level is attained at R = 2.325 a.u. (dotted red line). For comparison, the experimental bond length from the
literature (green line) is also shown. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)

carbon monoxide CO

up to 1f
1

2.0 2.2 2.4 2.6 2.8
R a.u.

102.6

102.4

102.2

102.0

Esingle Vee ZaZb R a.u.

carbon monoxide CO

up to 3s orbital

1

2.0 2.2 2.4 2.6 2.8
R a.u.

105.2

105.1

105.0

104.9

Esingle Vee ZaZb R a.u.

(a)

(b)

orbital

Fig. 9. Potential energy curve of the CO molecule restricted to the groundstate 1R+ symmetry subspace (this paper). (a) Same basis set as in Fig. 8, (b)
additionally including the 3sr"; spheroidal orbitals. In (b), the minimizer of the curve (dotted red line) is closer to the experimental bond length (green
line). Note that the energy axes are shifted by approximately 3 a.u. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)
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2s,2p, with the lowest 1s subshell always occupied). From [27], EO,min = �66.7048 a.u. for the groundstate angular momen-
tum/spin symmetry 3P. Thus, we obtain the dissociation energy
2EO;min � EO2 ;min ¼ 0:278971 a:u: ð5:3Þ
For comparison, the experimental dissociation energy of oxygen (enthalpy change at 0 K) is EO2 ;exp diss ¼ 5:1157 eV ¼
0:1879 a:u: [32], which differs from our calculated value (5.3) by approximately 50%. The discrepancy is likely due to the
small dimension of the Ansatz space (number of single-electron wavefunctions, up to the 2p subshell in our case). Note that
the dissociation energy is 3 orders of magnitude smaller than the total energy. Thus, subtracting groundstate energies re-
quires at least 4 correct decimal digits for just 1 digit of the dissociation energy. In any case, our calculated value reproduces
the experimental data qualitatively correct, in particular the sign (i.e., the fact that O2 binds).

To provide an example for a heteronuclear molecule, we repeat the analogous calculations for carbon monoxide CO, i.e.,
Za = 8, Zb = 6 and N = 14. Fig. 9 shows the resulting ground state dissociation curve with the same spheroidal Ansatz space (up
to 1fr";) as for oxygen. Notably, the deviation between the experimental bond length Rexp(12C16O) = 112.8 pm (green line,
[33,31]) and the calculated minimizer of the curve (dotted red line) is relatively large. This is presumably due to the small
number of spheroidal basis functions. Indeed, when including the 3sr"; spheroidal orbitals, the minimizer of the curve ap-
proaches the experimental value (Fig. 9).

6. Conclusions and outlook

We have developed and implemented an efficient computational framework to evaluate the angular and radial Coulomb/
exchange integrals in prolate spheroidal coordinates by employing Neumann’s expansion of 1/jx � yj and taking advantage
of symbolic integration as far as possible. The algorithm strongly relies on matrix operations to speed up computations.

A particular advantage of our approach is the universality of the precomputed numeric matrices in (4.10). Once obtained,
these matrices can be reused for subsequent calculations.

The application to the oxygen and carbon monoxide molecules shows the feasibility of our algorithm. We reproduce qual-
itatively correct energy curves, and the calculated bond length and dissociation energy are in reasonable agreement with
experimental values.

A long-term goal of the present paper is a better understanding and quantitative description of atomic interactions and
chemical bonds, which could be modeled using spheroidal orbitals. To reduce complexity, one could employ the well-known
hydrogen-like orbitals for the core electrons (close to the nucleus). This combination of spheroidal and hydrogen-like orbitals
requires proper orthonormalization and the calculation of Coulomb/exchange integrals between these different kind of orbi-
tals. Inversing the LCAO Ansatz to approximate the spheroidal wavefunctions locally (close to an atomic nucleus) might be
feasible for these purposes.

Finally, the algorithm presented here could be combined with established computational chemistry methods (like Con-
figuration Interaction or Coupled Cluster) in future projects.
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