
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 129.187.254.46

This content was downloaded on 11/02/2015 at 07:21

Please note that terms and conditions apply.

Quantum Boltzmann equation for spin-dependent reactions in the kinetic regime

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys. A: Math. Theor. 48 095204

(http://iopscience.iop.org/1751-8121/48/9/095204)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1751-8121/48/9
http://iopscience.iop.org/1751-8121
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Quantum Boltzmann equation for spin-
dependent reactions in the kinetic regime

Martin L R Fürst1,2, Markus Kotulla3, Christian B Mendl2 and
Herbert Spohn2,3

1 Excellence Cluster Universe, Boltzmannstraße 2, Technische Universität München,
D-85747 Garching bei München, Germany
2 Zentrum Mathematik, Boltzmannstraße 3, Technische Universität München, D-85747
Garching bei München, Germany
3 Physik Department, James-Franck-Straße 1, Technische Universität München, D-
85747 Garching bei München, Germany

E-mail: mfuerst@ma.tum.de, markus.kotulla@tum.de, mendl@ma.tum.de and
spohn@ma.tum.de

Received 12 November 2014, revised 28 December 2014
Accepted for publication 7 January 2015
Published 10 February 2015

Abstract
We derive and analyze an effective quantum Boltzmann equation in the
kinetic regime for the interactions of four distinguishable types of fermionic
spin-1

2
particles, starting from a general quantum field Hamiltonian.

Each particle type is described by a time-dependent, 2 × 2 spin-density
(‘Wigner’) matrix. We show that density and energy conservation laws
as well as the H-theorem hold, and enumerate additional conservation
laws depending on the interaction. The conserved quantities characterize the

→ ∞t thermal (Fermi–Dirac) equilibrium state. We illustrate the approach to
equilibrium by numerical simulations in the isotropic three-dimensional
setting.

Keywords: quantum Boltzmann equation, weak interaction, kinetic regime,
spin-dependent quantum processes

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin-dependent interactions on the quantum level give rise to a wide range of phenomena,
for example, the quantum coherence preserving charge and energy transfer during photo-
synthesis [1, 2], avian navigation of birds [3, 4] or quantum transport in condensed matter
physics [5–7], and are even investigated in astrophysics [8]. The dynamics can typically be
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modeled by a Hamiltonian on the level of quantum field theory, but solving the resulting
equations is often difficult in practice, such that effective approximations are desirable.

Here, we consider the limit of a weak potential interaction term λV with λ ≪ 1 in a
general quantum field Hamiltonian (see section 2), and systematically derive and analyze an
effective quantum Boltzmann equation in the kinetic regime (section 3) which describes the
interactions of four fermionic spin-1

2
particles. In particular, we prove the H-theorem and

discuss the conservation laws depending on the interaction (see section 4), and present a
detailed analysis of the relation between the conserved quantities and the → ∞t thermal
equilibrium state (see section 5). Finally, we illustrate the approach to equilibrium by
numerical simulations in the isotropic three-dimensional setting (sections 6 and 7). The main
differences compared to previous work [9, 10] are the four particle types and the continuous
domain for the momentum.

2. Multi-component field Hamiltonian

We consider fermionic spin-1

2
fields in a d-dimensional box = −U ℓ ℓ[ , ]d , with creation and

annihilation operators σ
αa x( )*, σ

αa x( ), where σ ∈ ↑ ↓{ , } denotes the spin and a b c dα ∈ { , , , }
the particle type. The operators for the same type obey the fermionic anticommutator relations

δ δ= −

=

=

σ
α

τ
α

στ

σ
α

τ
α

σ
α

τ
α

{ }

{ }
{ }

a x a y x y

a x a y

a x a y

( )*, ( ) ( ) ,

( ), ( ) 0,

( )*, ( )* 0 (1)

with = +A B AB BA{ , } . The operators for differing particles commute, i.e.,

α β= ≠σ
α

τ
β[ ]a x a y( )*, ( ) 0, . (2)

with the commutator [A, B] = AB − BA.
Formally, the underlying one-particle Hilbert space for each particle type is L U( , )2 2 ,

and the full Hilbert space is the tensor product of the Fock spaces for the individual particle
types.

Our field Hamiltonian is given by

λ= +H H H (3)0 1

with λ< ≪0 1 and

∫ ω=H x a x x a xd ( )* · ˆ ( ) · ( ) (4)
U

0

as well as

ab cd

ad cb

∫=

+ +

( )( )
( )( )

H x a x a x a x a x

a x a x a x a x

V V

V V

d ( )* · · ( ) ( )* · · ( )

( )* · · ( ) ( )* · · ( ) h.c. . (5)

U
1 1234 1 2 3 4

1 2 3 4

4

⎡
⎣⎢

⎤
⎦⎥

Here, the a(x) are operator-valued vectors

a a b d= ↑ ↓ ↑ ↓( )a x a x a x a x a x( ) ( ), ( ), ( ),..., ( ) (6)

and αβV are 8 × 8 matrices to be specified below ( a b c dα β ∈, { , , , }). ω xˆ ( ) in equation (4) is
the Fourier transform of the dispersion relation.
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Historically, Enrico Fermi derived [11] an explanation of the β decay using a Hamil-
tonian of the form (3). Fermi’s four-fermion theory could also predict the weak interaction
remarkably well. In this work, our aim is a generalization to spin-dependent interactions.

We will use the following convention for the Fourier transform (corresponding to the
finite volume U)

∫= −f p x f xˆ ( ) d ( ) e (7)
U

p xi ·

and the inverse Fourier transform

∑=
∈

f x
U

f p( )
1 ˆ ( )e , (8)

p U

p x

ˆ

i ·

with =L ℓ2 and = π
Û

L
d2 . ∣ ∣ =U Ld denotes the volume of the box. Accordingly, the

anticommutator relations in momentum space read

δ δ′ = − ′

′ =

′ =

σ
α

τ
α

στ

σ
α

τ
α

σ
α

τ
α

{ }

{ }
{ }

a p a p U p p

a p a p

a p a p

ˆ ( )*, ˆ ( ) ( ) ,

ˆ ( ), ˆ ( ) 0,

ˆ ( )*, ˆ ( )* 0. (9)

The kinetic part of the Hamiltonian in momentum space reads

∑ ω=
∈

H
U

a p p a p
1

ˆ( )* · ( ) · ˆ ( ). (10)
p U

0
ˆ

Here, the dispersion relations

ω =α
αp

p

m
( )

2
(11)

2

for each particle α with mass αm are summarized in the 8 × 8 diagonal matrix

a b c dω ω ω ω ω= ⊗ ×p p p p p( ) diag ( ), ( ), ( ), ( ) . (12)2 2
⎡⎣ ⎤⎦

The 2 × 2 identity matrices appear in spin space since the kinetic energy is independent of
spin. The finite box ⊂ U d ensures that the Fourier transform of the dispersion relation in
equation (11) is well-defined.

The interaction part of the Hamiltonian in momentum space is given by

abcd adcb= + +H H H h.c. (13)1 1 1

with

=αβγδ δγβα( )H H* (14)1 1

and

∑ δ=αβγδ αβ γδ( )( )H
U

p a p a p a p a pV V
1

( ) ˆ( )* · · ˆ ( ) ˆ( )* · · ˆ ( ) . (15)
p

1 4 1 2 3 4

1234

Here = − + −p p p p p1 2 3 4 is the momentum difference, ∑ = ∑p p p p p, , ,1234 1 2 3 4
, and we have

introduced the 8 × 8 matrices
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ab

ab

cd
cd

= =
V

V
V V

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0
0 0 0
0 0 0 0

, (16)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

ad

ad

cb
cb

= =
V

V
V V

0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

,

0 0 0 0
0 0 0 0
0 0 0
0 0 0 0

. (17)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

The Hamiltonian should model the interactions

ð18Þ

and

ð19Þ

To quantify the (possibly spin-dependent) strength of the interactions, we introduce the 2 × 2
real-valued ‘interaction matrices’ abV , cdV , adV and cbV in momentum space. They model the
interactions

α β α β⟵ = ⟶αβ αβ βα( )V V V: , * : (20)

with a b c dα β ∈, { , , , }. For simplicity, we assume that these matrices are constant
(independent of p). Note that they permit spin dependent reactions like

a c b d⟶↑ ↓ ↓ ↓( , ) ( , ). (21)

The system respects conservation of energy and overall particle number. We denote the
particle number operator for field α by

∑=α

σ
σ
α

σ
α

∈ ∈ ↑ ↓

N a p a pˆ ˆ ( )* ˆ ( ) (22)
p Û, { , }

and thus the total particle number operator reads

a b c d

∑=
α

α

∈

N Nˆ ˆ . (23)
{ , , , }

It satisfies the relation =H N[ , ˆ ] 0, as required. Certain sums of two particles are also
conserved

a b c d

a d c b

+ = + =

+ = + =

[ ] [ ]

[ ] [ ]

H N N H N N

H N N H N N

, ˆ ˆ 0, , ˆ ˆ 0,

, ˆ ˆ 0, , ˆ ˆ 0, (24)

since the Hamiltonian only includes the processes in equations (18) and (19). Concerning
a b+N Nˆ ˆ , for example, the creation of a involves a simultaneous annihilation of b according

to the Hamiltonian structure (15) and hence the sum a b+N Nˆ ˆ remains constant. Note that not
all combinations of two particle types are conserved, e.g.,

a c b d+ ≠ + ≠[ ] [ ]H N N H N N, ˆ ˆ 0, , ˆ ˆ 0. (25)
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3. Boltzmann kinetic equation

We will derive the kinetic Boltzmann equation in appendix A. The central object are the two-
point functions αW p t( , ), defined by the relation

δ δ〈 ′ 〉 = − ′σ
α

τ
β

αβ στ
αa p t a p t U p p W p tˆ ( , )* ˆ ( , ) ( ) ( , ) (26)

for all particle types a b c dα β ∈, { , , , }. We collect the 2 × 2 positive semidefinite (spin
density) Wigner states αW p t( , ) in a 8 × 8 block-diagonal matrix

a b c d=W W W W Wdiag , , , , (27)1 1 1 1 1
⎡⎣ ⎤⎦

where we have used the notation =W W p t( , )1 1 . The resulting Boltzmann equation reads

∂
∂

= 
t
W p t W p t( , ) [ ]( , ) (28)

with the collision operator consisting of a conservative and dissipative part

= +  W p t W p t W p t[ ]( , ) [ ]( , ) [ ]( , ). (29)cons diss

cons and diss both preserve the block-diagonal structure.
The conservative collision operator cons is the Vlasov-type operator

= − [ ]W p t H p t W p t[ ]( , ) i ( , ), ( , ) , (30)cons eff

where the effective Hamiltonian H p t( , )eff is a 8 × 8 block-diagonal matrix which itself
depends on W:

∫
π

δ ω= −


( )H p p h W
1

(2 )
d ( ) [ ] . (31)eff,1 3 234

1
eff 234

d3

The energy differences are defined as

abcd badc cdab dcbaω ω ω ω ω= ⊗ ×diag , , , (32)2 2
⎡⎣ ⎤⎦

with ω ω ω ω ω= − + −αβγδ α β γ δp p p p( ) ( ) ( ) ( )1 2 3 4 . In equation (31) we have used the

shorthand notation =p p p pd d d d234 2 3 4. Note that the expression ω− ( )1 is a diagonal
matrix of principal values. The index 234 means that the block-diagonal matrix h W[ ]eff

depends on p2, p3, and p4. It is given by

x x x x

x x x x

x x x x

x x x x

tr

tr

tr

tr

= − −
− −
−

−

−

−

= = = =

= = = =

= = = =

= = = =

h W V W V W V W V V W V W V W V

V W V W V W V V W V W V W V

V W V Y W V W V Y

V W V Y W V W V Y

V W V Y W V W V Y

V W V Y W V W V Y

[ ] ˜ ˜

˜ ˜ ˜ ˜

· ˜

˜ · ˜

· ˜

˜ · ˜ , (33)

eff 234 2 3 4 4 3 2

2 3 4 4 3 2

2 3 4

2 3 4

4 3 2

4 3 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

using the notation = −×W W˜i i8 8 . The tr operator appearing in equation (33) acts separately
on each (2 × 2) diagonal block, i.e.,

a b c d

tr ∑= = ⊗
α

α α α
α α

∈
×[ ]W E E W E e e[ ] tr , (34)

{ , , , }

2 2
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with αe enumerating the standard basis of 4. The operator Y appearing in equation (33)
switches the particle types a b c d↔( , ) ( , ) and is defined as

= ⊗ ×Y

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

. (35)2 2

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
The 8 × 8 interaction matrices read

ab

ba

cd

dc

==V

V
V

V
V

0 0 0
0 0 0

0 0 0
0 0 0

(36)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

and

x

ad

bc

cb

da

=V

V
V

V
V

0 0 0
0 0 0
0 0 0

0 0 0

, (37)

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

where always =βα αβV V( )*. The superscripts of =V and xV refer to the arrows in
equations (18) and (19).

It turns out that the interaction matrices enter the collision operator only via the following
4 × 4 matrix

ab cd ad cb= ⊗ + ⊗ ( ) ( )V V V V T , (38)

with

= ∈ ×T

1
0 1
1 0

1

(39)4 4

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

an operator which interchanges tensor components (represented in the standard basis ∣ ↑ ↑ 〉,
∣ ↑ ↓ 〉, ∣ ↓ ↑ 〉, ∣ ↓ ↓ 〉). For example, the a a( , )-component (first 2 × 2 block) of the integrand
h W[ ]eff 234 can be represented as

a c b d

c b d

σ τ τ σ

τ σ

= ⊗ ⊗

+ ⊗ ⊗

 
 ( )

( ) ( )
( )

( )h W W W W

W W W

[ ] tr ˜ *

˜ ˜ * (40)

eff 234 3 2 4

3 2 4

⎡⎣
⎤
⎦⎥

with the notation = −α α
×W W˜

i i2 2 . Note that h W[ ]eff 234 is invariant under ↔α α
W W̃i i , and

formally similar to equation (44). The other components arise from the a a( , )-component by
permutations of a, b, c, d, as for the dissipative operator.

The dissipative part of the collision operator is

∫π
π

δ δ ω= +  


( )W p p W W[ ]
(2 )

d ( ) ( ) · [ ] [ ] , (41)diss 1 3 234 quad 1234 tr 1234
d3

where the index 1234 means that the block-diagonal matrices  W[ ]quad and  W[ ]tr depend
on p1, p2, p3, and p4. They are given by
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x x x x

x x x x

= + −

+ − +

= = = =

= = = =

 W W V W V W V W V W V W V W V W V

W V W V W V W V W V W V W V W V

[ ] ˜ ˜ ˜ ˜

˜ ˜ ˜ ˜ h.c. (42)

quad 1234 1 2 3 4 1 2 3 4

1 4 3 2 1 4 3 2

and

x x x x

x x x x

tr

tr

tr

tr

= + +

− +

+ +

− +

= = = =

= = = =

 ( )
( )
( )
( )

W W V W V Y W V W V Y

W V W V Y W V W V Y

W V W V Y W V W V Y

W V W V Y W V W V Y

[ ] ˜ h.c. · ˜

˜ h.c. · ˜

˜ h.c. · ˜

˜ h.c. · ˜ . (43)

tr 1234 1 2 3 4

1 2 3 4

1 4 3 2

1 4 3 2

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

If any of the two matrices =V or xV is zero, then = W[ ] 0quad , and the first two or last two

terms of  W[ ]tr disappear. Note that ↔α α
W W̃i i effectively switches signs in equations (42)

and (43), and that the respective last two terms equal the first two after switching b d↔ and
↔2 4.
Performing the matrix multiplications in equations (42) and (43) shows that Wigner

matrices with particle types α and β are always coupled by the respective αβV matrix, e.g.,
α αβ βW V W˜

i j . Additionally, the b b( , )-component arises from the a a( , )-component by per-
muting a b↔ , c d↔ . Analogously, the c c( , )-component arises from a a( , ) by permuting
a c↔ , b d↔ , and the d d( , )-component arises from the a a( , )-component by permuting
a d↔ , b c↔ .

Algebraic reformulation of the a a( , )-component of the integrand + W[ ]quad 1234

 W[ ]tr 1234 results in
a

a c b d

a c b d

σ τ

τ σ

τ σ

+

= ⊗ ⊗

− ⊗ ⊗

 
 

 ( )
( ) ( )

( )

( )

{ }

{ }

W W

W W W W

W W W W

[ ] [ ]

tr ˜ , ˜ *

, ˜ ˜ * (44)

quad 1234 tr 1234

1 3 2 4

1 3 2 4

⎡⎣
⎤
⎦⎥

for all spin components σ τ, , where {·,·} denotes the anticommutator. Equivalent expressions
give the b, c and d components after appropriate interchanges of a, b, c, d as above, with the
anticommutator acting on bW , cW and dW , respectively. For example, after a short
reformulation

b

a c b d

a c b d

σ τ

τ σ

τ σ

+

= − ⊗ ⊗

+ ⊗ ⊗

 
 

 ( )
( ) ( )

( )
{ }

( ) { }

W W

W W W W

W W W W

[ ] [ ]

tr ˜ ˜ , *

˜ , ˜ * . (45)

quad 1234 tr 1234

2 4 1 3

2 4 1 3

⎡⎣
⎤
⎦⎥

4. General properties of the kinetic equation

The kinetic equation inherits density and energy conservation laws of the Hamiltonian sys-
tem, as shown below, and the H-theorem holds. Specifically for the multi-component system,
there emerge additional conserved quantities depending on the special structure of the αβV
matrices. In this context, the evolution dynamics is invariant under unitary rotations with
fixed unitary ∈αU SU(2) (separately for each block and independent of p and t), i.e.,
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simultaneously

a c b d

→

→

→ ⊗ ⊗

α α α α

αβ α αβ β

 
( )

( )( )

( )W U W U

V U V U

U U U U

*,

*,

*, (46)

which can be seen from the representation in equation (44).

4.1. Density conservation

We define the spin density matrix of particle type α as

∫ρ =α α


t p W p t( ) d ( , ), (47)
d

and the total spin density matrix as

a b c d

∑ρ ρ=
α

α

∈

t t( ) ( ). (48)
{ , , , }

The analogue of the particle conservation [H, N] = 0 on the kinetic level reads

∫ ∫ρ = = =
 t

t
t

p W p t p W p t
d

d
tr [ ( )]

d

d
d tr [ ( , )] d tr [ [ ]( , )] 0. (49)

d d

Even more strongly, according to equation (24) it should hold that

∫ρ ρ+ = =α β αβ 
t

t t p W p t
d

d
tr [ ( ) ( )] d tr [ [ ]( , )] 0 (50)

d

for abαβ = , cd, ad or cb. The trace αβtr is understood to act on the blocks α and β only, i.e.,

= +αβ α βW p t W p t W p ttr [ ( , )] tr [ ( , )] tr [ ( , )]. (51)

Relation (50) holds since the integrand of the dissipative diss vanishes after appropriate
interchange of 1, 2, 3, 4: note that

∑ σ σ =
σ

α α

∈ ↑ ↓
{ }W W, 2 , (52)i i

{ , }

such that for abαβ = , say, the traces of the a-component in equation (44) and b-component
in equation (45) (with ↔(1, 3) (2, 4)) cancel out. The conservative collision operator cons

inserted into (50) vanishes immediately since cons is a commutator.
Note that taking the trace is indeed required in equation (49), i.e., the individual spin

components are not conserved in general.

4.2. Momentum conservation

Momentum conservation

∫ ∫= =
 t

p p W p t p p W p t
d

d
d tr[ ( , )] d tr[ [ ( , )]] 0 (53)

d d

with the dispersion matrix follows from the factor δp p( ) in the integrand after appropriate
interchanges ↔1 3, ↔2 4 and ↔(1, 3) (2, 4). Isotropic states always have zero average
momentum.
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4.3. Energy conservation

Energy conservation is represented by the equation

∫ ∫ω ω= =
 t

p p W p t p p W p t
d

d
d tr[ ( ) · ( , )] d tr[ ( ) · [ ( , )]] 0 (54)

d d

with the dispersion matrix ω p( ) defined in equation (12). The term inside the trace is a 8 × 8
matrix. Similar to the momentum conservation, equation (54) follows from the factor

a b c d a b c dω ω ω ω δ ω ω ω ω− + − − + −( ) ( )1 2 3 4 1 2 3 4 in the integrand after appropriate inter-
changes ↔1 3, ↔2 4 and ↔(1, 3) (2, 4).

4.4. Additional conservation laws depending on the interaction matrices

Taking all conservation laws into account is necessary for computing the asymptotic (thermal)
equilibrium state (see section 5 below), and there are additional conservation laws depending
on the αβV matrices. Since the collision operator can be expressed in terms of the  matrix in
equation (38), it suffices to discuss the structure and zero pattern of the entries of  , which is
to be understood modulo unitary rotations of the form (46). Whenever such rotations lead to a
particular pattern as discussed in the following, the respective conservation law holds in this
basis.

We will only consider αβV matrices with full rank 2, to exclude degenerate cases like
=αβV 0 (as a matrix).
General diagonal αβV . The  matrix represented in the standard basis (∣ ↑ ↑ 〉, ∣ ↑ ↓ 〉,

∣ ↓ ↑ 〉, ∣ ↓ ↓ 〉) has the structure

=
* 0 0 0
0 * * 0
0 * * 0
0 0 0 *

, (55)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
where each star represents an arbitrary number. In this case, the diagonal entries of the total
spin remain constant under the time evolution of the Boltzmann equation

a b c d

∫∑ρ = =σσ
α

σσ
α

∈
t

t
t

pW p t
d

d
( )

d

d
d ( , ) 0. (56)

{ , , , }
d

To prove this assertion, consider the ↑↑ entry (the proof for the ↓↓ entry proceeds
analogously). Expanding the representation (44) gives

a b c d

a c b d

a c b d

∑

∑ σ τ σ σ τ τ σ σ τ τ

σ σ τ τ σ σ τ τ

τ τ σ σ τ τ σ σ

↑ + ↑

= ⊗ ⊗

− ⊗ ⊗

×

σ τ

α

α

∈

 

 
)( )

( ( ) ( )

( )

( )

W W

D W W W W

W W W W

[ ] [ ]

( , ) ˜ ˜

˜ ˜

* (57)

{ , , , }

quad 1234 tr 1234

,

1 3 1 3 1 3 2 4 2 4 2 4

1 3 1 3 1 3 2 4 2 4 2 4

1 3 2 4 2 4 1 3

with

σ τ δ δ δ δ δ δ δ δ= + − − + + − −σ τ σ τ σ τ σ τ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑( )D ( , ) (58), , , , , , , ,1 1 2 2 3 3 4 4
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and the notation σ σ σ σ σ= ( , , , )1 2 3 4 , τ τ τ τ τ= ( , , , )1 2 3 4 . Direct inspection shows that

σ τ =D ( , ) 0 or τ τ σ σ τ τ σ σ〈 ∣ ∣ 〉〈 ∣ ∣ 〉 = * 01 3 2 4 2 4 1 3 for all spin combinations, given the
zero pattern in equation (55).

There are + d5 independently conserved quantities: the two diagonal entries in
equation (56), the densities of a b+ and a d+ according to equation (50), the momentum
and the total energy. The other conserved quantities are redundant; for example, the density of
c d+ can be obtained from the sum of the diagonal entries in equation (56) minus the density
of a b+ .

All αβV proportional to the identity matrix. This is a special case of (a), relevant for the β
decay discussed below, and  is of the form x= +=

× c c T4 4 with two constants c= and xc .
In this case  is invariant under a simultaneous unitary rotation of the Wigner matrices as in
equation (46) with a b c d= = = = ∈U U U U U SU(2), i.e., ⊗ ⊗ = U U U U( ) ( )* .

Such a simultaneous rotation sends ρ ρ→t U t U( ) ( ) *, and together with equation (56), it
follows that the total spin density matrix remains constant in time

ρ =
t

t
d

d
( ) 0. (59)

Alternatively, one could prove this assertion starting directly from equation (44), together
with the identities ⊗ =A B A Btr[ ] tr[ ] tr[ ] and =A C B A B Ctr[{ , } · ] tr[ · { , }], which are
valid for any matrices A, B and C.

Zero outer frame in  matrix. We investigate the zero pattern

=
0 0 0 0
0 * * 0
0 * * 0
0 0 0 0

, (60)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

represented in the standard basis ∣ ↑ ↑ 〉( , ∣ ↑ ↓ 〉, ∣ ↓ ↑ 〉, ∣ ↓ ↓ 〉) as above. This pattern can
emerge from non-diagonal αβV interaction matrices with full rank, too. Besides the
conservation of the diagonal entries in equation (56), the projection onto the Pauli matrix

σ = −
1 0
0 1z ⎜ ⎟

⎛
⎝

⎞
⎠ for types a c+ and b d+ is also conserved, i.e.,

∫∑ ∑σ ρ σ= =
α

α

α

α
t

t
t

p W p t
d

d
tr ( )

d

d
d tr ( , ) 0 (61)z z

d
⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦

with summation over a cα ∈ { , } or b dα ∈ { , }. To prove this statement, first note that

σ =
↑ ↑

− ↓ ↓
α

α

α{ }W
W

W
, 2

0

0
. (62)i z

i

i

⎛
⎝⎜

⎞
⎠⎟

Then we proceed as for diagonal αβV above, except that σ τD ( , ) in equation (57) is replaced
by

σ τ σ σ τ σ σ τ′ = +( )D ( , ) 2 (63)z z1 1 3 3

for a cα ∈ { , }. As before, σ τ′ =D ( , ) 0 or τ τ σ σ τ τ σ σ〈 ∣ ∣ 〉〈 ∣ ∣ 〉 = * 01 3 2 4 2 4 1 3 for all spin
combinations, given the pattern in equation (60).

In summary, there are + d6 independently conserved quantities: the + d5 quantities
from case (a) with diagonal αβV , and the projection onto σz in equation (61) with summation
over a cα ∈ { , }. Summation over b dα ∈ { , } is redundant due to equation (56).

The independently conserved quantities are summarized in table 1.
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4.5. H-theorem

In the following, we prove the H-theorem which states that the entropy is monotonically
increasing. We represent each Wigner function by its spectral decomposition

∑ λ=α

σ
σ
α

σ
α

∈ ↑ ↓

W p p P p( ) ( ) ( ) (64)
{ , }

for a b c dα ∈ { , , , }, where λ⩽ ⩽σ
α p0 ( ) 1 are the eigenvalues and

α σ α σ= ∣ 〉〈 ∣σ
αP p p p( ) ; , ; , an orthogonal eigenprojector.

The entropy production is given by

∫σ = = − − 


( )W
t
S W p W W W[ ]

d

d
[ ] d tr log log ˜ [ ] . (65)1 1 1 1

3

⎡⎣ ⎤⎦
In the following, we will use the shorthand notation λ λ= σ p( )j

j
j

( )
j

, = = ∣ 〉〈 ∣σP P p j j( )j
j

j
( )

j
, and

∑ = ∑σ σ σ σ σ, , ,1 2 3 4
. For example, bλ λ= σ p( )2 22

. Inserting the spectral decomposition (64) and
the integrand representation (44) of the dissipative collision operator into equation (65), the
contribution of the a a( , )-component (first 2 × 2 block) to the entropy production reads

a a b c d

a c b d

a c b d

a b c d

∫

∫
∑

σ π δ δ ω ω ω ω

π δ δ ω ω ω ω

λ λ λ λ λ λ λ λ λ λ

= − − + −

× − ⊗ ⊗

− − ⊗ ⊗

= − + −

× − −

×
σ

 
 

 

( )
( )

( )

( )
( )

( )
( )( )

{ }

{ }

W p p

W W W W W W

W W W W W W

p p

[ ] d ( )

tr ˜ , log log ˜ ˜ *

, log log ˜ ˜ ˜ *

2 d ( )

log log ˜ ˜ ˜ ˜ ˜

13 24 24 * 13 . (66)

1234 1 2 3 4

1 1 1 3 2 4

1 1 1 3 2 4

1234 1 2 3 4

1 1 1 2 3 4 1 2 3 4

⎡⎣
⎤
⎦⎥

The contribution of the b b( , )-component to the entropy production coincides with
equation (66) after permuting a b↔ , c d↔ . Together with relabeling the integration
variables ↔1 2 and ↔3 4, the contribution of the b b( , )-component has exactly the same
form as (66) upon replacing

λ λ λ λ− → − −( ) ( )log log ˜ log log ˜ . (67)1 1 2 2

Similar reasoning holds for the contributions from the c c( , ) and d d( , ) components. In
summary, the entropy production equals

a b c d∫

∑

σ π δ δ ω ω ω ω

λ λ λ λ
λ λ λ λ

λ λ λ λ λ λ λ λ

= − + −

× − ⩾
σ



( )

( )

W p p[ ] 2 d ( )

log
˜ ˜

˜ ˜
˜ ˜ ˜ ˜ 13 24 0 (68)

1234 1 2 3 4

1 2 3 4

1 2 3 4
1 2 3 4 1 2 3 4

2
⎛
⎝⎜

⎞
⎠⎟

since − ⩾x y x y( ) log ( ) 0.

5. Stationary states

All stationary states have to satisfy σ =W[ ] 0, i.e., the entropy production must be zero. To
elucidate the set of Wigner functions which adhere to this condition, we define (in the context
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Table 1. Independently conserved quantities, depending on the special structure of .

Structure of  Conserved quantities

General  Momentum (53) and
energy (54)

a bρ ρ+t ttr [ ( ) ( )] a dρ ρ+t ttr [ ( ) ( )] ρ ttr [ ( )]

 in equation (55) (general diagonal αβV ) ∥ ∥ ∥ ρ↑↑ t( ) ρ↓↓ t( )

x= +=
× c c T4 4 ( αβV proportional to

identity)

∥ ∥ ∥ ρ t( )

Zero outer frame in  matrix
(equation (60))

∥ ∥ ∥ ρ↑↑ t( ) ρ↓↓ t( ) a cσ ρ ρ+( )t ttr [ ( ) ( ) ]z

J.
P
hys.

A
:
M
ath.

T
heor.

48
(2015)

095204
M

L
R

F
ürst

et
al

12



of the proof of the H-theorem)

σ
λ λ λ λ
λ λ λ λ

λ λ λ λ λ λ λ λ= − ⩾( )pF ( , ) log
˜ ˜

˜ ˜
˜ ˜ ˜ ˜ 0 (69)1 2 3 4

1 2 3 4
1 2 3 4 1 2 3 4

⎛
⎝⎜

⎞
⎠⎟

and σ = 〈 ∣ ∣ 〉 p( , ) 13 24 , where  is the 4 × 4 matrix in equation (38) and we have used
the notation ∣ 〉〈 ∣ = σj j P p( )j

j
( )

j
from above. It must hold that σ =pF ( , ) 0 or σ = p( , ) 0 (or

both) for each configuration of the σ variables, according to equation (68). Defining the
collision invariants as

Φ
λ
λ

=σ
α σ

α

σ
αp

p

p
( ) log

( )
˜ ( )

, (70)
⎛
⎝⎜

⎞
⎠⎟

then σ =pF ( , ) 0 is equivalent to

a b c dΦ Φ Φ Φ− + − =σ σ σ σp p p p( ) ( ) ( ) ( ) 0. (71)1 2 3 41 2 3 4

Based on general arguments [12], one expects that the Wigner functions will equilibrate as
→ ∞t , i.e., converge to thermal equilibrium (Fermi–Dirac) distributions

∑ λ α σ α σ

λ

=

= +

α

σ
σ

α

σ
α β ω μ

∈ ↑ ↓

−
−α

σ
α( )( )

W p p

p

( ) ( ) ; ; with

( ) e 1 . (72)p

eq
{ , }

eq,

eq,
( )

1

Here we have assumed that the orthonormal eigenbasis α σ∣ 〉; is independent of p (thus
σ σ= p( , ) ( )), that the average momentum is zero, and that all particle types share the

same inverse temperature β. We exclude degenerate cases like =αβV 0 as a matrix. Inserting
the Fermi–Dirac eigenvalues in (72) into (71) and using the energy conservation translates to
the linear equation

a b c dσ μ μ μ μ= ⇔ − + − =σ σ σ σpF ( , ) 0 0. (73)
1 2 3 4

The remaining task is to determine the chemical potentials μσ
α, inverse temperature β and

the basis α σ∣ 〉; in accordance with the conservation laws, which themselves depend on  .
For the following, it is convenient to represent the right side of equation (73) for each σ

combination as 4 × 4 matrix (denoted by  ) with entries

a b c dσ σ σ σ μ μ μ μ= − + −σ σ σ σ (74)1 3 2 4
1 2 3 4

with respect to the standard basis ∣ ↑ ↑ 〉 ∣ ↑ ↓ 〉 ∣ ↓ ↑ 〉 ∣ ↓ ↓ 〉( , , , ). This representation is
analogous to the  matrix.

After changing basis according to equation (46),  may be represented in the eigenbasis
α σ∣ 〉; , and we can without loss of generality assume that α σ∣ 〉; is the standard basis.

In what follows, we discuss a (non-exhaustive) list of special cases (as for the additional
conservation laws in section 4.4).

General  . We assume that  exhibits none of the zero patterns below, even after unitary
rotations of the form (46). Explicit enumeration using a computer algebra system shows the
following: whenever the condition (73) holds for at least nine (pairwise different) config-
urations of the σ variables, then all chemical potentials are necessarily independent of spin

a b c dμ ν ν ν ν ν= − + − =σ
α α with 0. (75)
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In this case σ =pF ( , ) 0 always. According to the first row in table 1, there are four
independently conserved quantities (for zero average momentum), and correspondingly four
parameters to describe the equilibrium state, namely β, aν , bν and cν ( dν is fixed by
equation (75)). Note that the choice of the basis α σ∣ 〉; is arbitrary in the present case due to
independence of spin.

 with zero structure in equation (55). This case is equivalent to general diagonal αβV
matrices. Since σ =pF ( , ) 0 must hold whenever σ ≠ ( ) 0, the required complementary
zero pattern for  reads

=
0 * * *
* 0 0 *
* 0 0 *
* * * 0

. (76)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
Solving the linear equations (73) corresponding to the zero entries of this matrix leads to the
solution

μ ν σ σ σ= +σ
α α c z

with a fixed ∈ c and a b c dν ν ν ν− + − = 0. There are five independent parameters (in
accordance with the five conservation laws in the second row of table 1): the values of β, aν ,
bν , cν and c.

x= +=
× c c T4 4 . This structure results from all αβV matrices proportional to the

identity matrix, summarized in the third row of table 1. Since ρ t( ) remains constant in time,
we can diagonalize ρ t( ) by a global, constant unitary rotation ∈U SU(2). Thus, without loss
of generality one can assume that ρ t( ) is diagonal. From here the argumentation proceeds as
in the previous case with general diagonal αβV .

Zero outer frame in  matrix, equation (60). The complementary zero pattern for  is

=
* * * *
* 0 0 *
* 0 0 *
* * * *

. (77)

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

Solving the corresponding system of linear equations according to (73) leads to

μ ν σ σ σ= +σ
α α αc (78)z

with a c=c c , b d=c c and a b c dν ν ν ν− + − = 0. The number of independent parameters (β,
aν , bν , cν , ac and bc ) for zero average momentum matches the number of conserved quantities,
see last row in table 1.

In practice, we fit β and the additional parameters numerically such that the conserved
quantities obtained from the corresponding Fermi–Dirac state match the ones of the initial
state. We conjecture that the map from the conserved quantities to the parameters is one
to one.

6. Numerical procedure

Concerning the numeric integration for the dissipative collision operator, our goal is to solve
the following p1-dependent integral numerically:

∫π δ δ ω= +α αβγδ α  


( )( )W p p W W[ ] d ( ) [ ] [ ] , (79)diss 1 234
3

quad 1234 tr 1234
9

where we have used the notation p = − + −p p p p1 2 3 4 and ωαβγδ ω ω ω ω= − + −α β γ δ
1 2 3 4 .
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We follow the derivation [13, appendix A] to resolve the δ-functions in the collision
integral (79) as far as possible and to integrate out the angular parts. Expressed in terms of the
energies ε = ∣ ∣p m(2 )i i

i2 with = αm m1 , = βm m2 etc, and using the relation

Ω ε= ∣ ∣p p md d d , (80)i i
i

i
3

one arrives at the following two-dimensional integral:

∫π ε ε=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣

× +

α β γ δ
ε

α



 


( )

( )
W m m m

p p p p

p

W W

[ ] (2 ) d d
min , , ,

[ ] [ ] (81)

diss 1
3

( )
2 4

1 2 3 4

1

quad 1234 tr 1234

1

with the integration domain ε ε ε ε ε ε ε ε= ∣ ⩾ ⩾ + − ⩾ { }( ) , 0, 0, 01 2 4 2 4 2 4 1 and the

relations ε∣ ∣ =p m2i
i

i and ε ε ε ε= + −3 2 4 1. The (unbounded) domain ε ⊂ ( )1
2 simply

encodes the physical condition that the individual energies must be non-negative. Note that
the min-term in equation (81) expressed by the particle energies reads

ε ε ε ε

ε
=

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣
=

α β γ δ

α

( )( )
D

p p p p

p

m m m m

m

min , , , min , , ,
. (82)

1 2 3 4

1

1 2 3 4

1

1 2⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

The numerical discretization of the integral (81) should preserve the conservation laws,
which result from the interchangeability ε ε↔1 3, ε ε↔2 4 and the pairs ε ε ε ε↔{ , } { , }1 3 2 4 .
For this reason, we refrain from using Zakharov transformations [13, 14], and instead opt for
a uniform grid for the energy variables, as follows. To adopt the symmetries in the numerical
discretization, we first rewrite the integral (81):

∫
∫

∫

ε ε

ε ε ε ε δ ε ε ε ε

δ ε ε

Δε Δε δ Δε ε

+

= ′ ′ − + −

× ′ − +

= + −

× +

ε

α

α

α
′

 

 

 





( )

( )

( )

( )

( )

( )

D W W

D W W

s s

D W W

d d [ ] [ ]

d d d d

[ ] [ ]

2 d d d

[ ] [ ] , (83)

( )
2 4 quad 1234 tr 1234

1 2 3 4 1 2 3 4

1 1 quad 1234 tr 1234

13 13 24 13 13 1

quad 1234 tr 1234

1

where we have used the substitution

ε ε Δε ε ε= ′ + = ′ −( ) ( )s
1

2
,

1

2
, (84)13 1 3 13 1 3

ε ε Δε ε ε= + = −s
1

2
( ),

1

2
( ). (85)24 2 4 24 2 4

The domain ′ of the last integral in (83) is defined as

Δε Δε Δε Δε′ = − ⩾ − ⩾ { }s s s, , 0, 0 , (86)13 13 24 13 13 13 24

corresponding to non-negative energies.
Numerically, we store the Wigner matrices εαW ( )j

( ) discretized on a uniform grid for the
energy variable:
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ε = = −h j j n, 0, 1 ,..., 1, (87)j

with a small grid spacing < ≪h0 1. The same uniform grid is used to approximate the
integration with respect to s13, Δε13 and Δε24 in (83), such that the energy values
ε Δε= −s3 13 13, ε Δε= +s2 13 24 and ε Δε= −s4 13 24 are always grid points (87). Note that
ε ε↔1 3 corresponds to Δε Δε↔ −13 13 and likewise for Δε24, and that ε ε ε ε↔{ , } { , }1 3 2 4

corresponds to Δε Δε↔13 24.
Alternative integration schemes (like the apparent Gauss–Laguerre quadrature rule) were

also considered but eventually dismissed in favor of the simple trapezoidal rule on a uniform
grid. The main advantages are that the conservation laws are respected by the numerical
procedure, and that no interpolation of Wigner matrices is required. The uniform dis-
cretization has been suggested before [15]. Unfortunately, the fast algorithm proposed in [15]
cannot simply be used here due to the dependence of D in equation (82) on the particle
masses.

Different from the one-dimensional case, a mollification procedure as in [9, 10] is not
required since the integrals no longer diverge.

Concerning the conservative collision operator cons, we perform a change of variables to
the energies εi as for the dissipative operator. The integral (31) for the effective Hamiltonian
then reads

∫π ε ε ε

ε ε ε ε

=
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

∣ ∣

× − + −

α β γ δ

α− ( )

( )
H m m m

p p p p

p

h W

2(2 ) d d d
min , , ,

( ) [ ] . (88)

eff,1
2

2 3 4
1 2 3 4

1

1 2 3 4
1

eff 234

Analytically, the principal value results in the derivative of the integrand, in the sense that

∫ ε ε ε = ′ +
−

− f h f h
1

2
d ( ) ( ) (0) ( ) (89)

h

h
1 3

for any sufficiently smooth function f. In the numerical scheme, we simply omit the grid
points for which ε ε ε ε− + − = 01 2 3 4 , in order to preserve the conservation laws. The error
of this approximation is expected to vanish for grid spacing →h 0.

To solve the Boltzmann equation, we use the explicit midpoint rule for = +  diss cons

as in [10]. As advantage, this approach exactly preserves the spin and energy conserva-
tion laws.

We have implemented the numerical scheme described so far in plain C code, and use the
MathLink interface to make the numerical procedures conveniently accessible from
Mathematica.

7. Simulation results

For the following simulations, we fix an initial Wigner state W p( , 0) with particle masses
a =m 1, b =m 4

5
, c =m 1

5
and d =m 1

2
. Figure 1 illustrates the αW p( , 0) components in

dependence of ∣ ∣p . For reference, the analytical formulas of the initial state are recorded in
appendix B. Note that on the quantum field level in (18) and (19), a conservation of masses
like a c b d+ = +m m m m is not required.
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Figure 1. The initial state W(p,0) used for the simulations. Left column: matrix entries:
the blue and green (upper) curves show the real diagonal entries, and the red and
magenta curves the real and imaginary parts of the off-diagonal ∣ ↑ 〉〈 ↓ ∣ entry,
respectively. Right column: corresponding eigenvalues of αW p( , 0).
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7.1. Weak interaction: β decay

An application of our framework is the β decay, i.e., the decay of a neutron n into a proton p,
an electron e and an antineutrino ν . Equivalently, this process can be represented as

n p eν+ ⟷ + . (90)

The interaction part from equation (5) is given by

π= βH
g

H
4

, (91)1

w
2

where gw is the weak coupling factor and

p n e∫ γ γ γ γ= + −β
μ

μ
ν( )( )( ) ( )H

G
x u C C u u u

2
d 1 (92)V A

F 3
5 5

the Hamiltonian of the Fermi theory [16]. Einstein summation convention is used for the
gamma matrices γμ and CV, CA are constants satisfying

= − ±C C 1.255 0.006. (93)A V

GF is the Fermi coupling constant. With the relation for the weak coupling constant α =
π

g
w 4

w
2

,
we identify

α π = =
m

g

m

G4

8 8 2
, (94)w

w
2

w
2

w
2

F
⎛
⎝⎜

⎞
⎠⎟

where mw is the mass of the W boson. In our notation of equation (3) the dimensionless weak
coupling

λ α= ≈ 0.0339. (95)w

A short calculation shows that the Hamiltonian in equation (92) can be represented in the
form of equation (13) by setting

np e= − =ν ( )V C C V, , (96)V A

ne p= =ν V V C, 2 (97)A

up to the g 2 prefactor, that is, all interaction matrices are proportional to the identity
matrix. Physically, the β decay process is independent of spin.

Figure 2 illustrates asymptotic thermal Fermi–Dirac equilibrium states as determined
from the conservation laws. The equilibrium states are represented in the eigenbasis of the
total density ρ t( ), which remains constant in time according to equation (59). The particle
type associations are a: neutrons, b: protons, c: neutrinos and d: electrons. The masses are not
physically realistic in this model calculation. Our numerical simulation with the interaction
matrices in equations (96) and (97) indeed confirms that the Boltzmann equation drives the
initial state in figure 1 to these thermal equilibrium states. The entropy convergence is
visualized in figure 3.
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7.2. Zero outer frame in 

We discuss a simulation with  matrix (equation (38))

=
−

−


0 0 0 0

0
5

8

1

3
0

0
1

4

2

15
0

0 0 0 0

. (98)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
The sparsity pattern of  educes additional conserved quantities, as discussed in section 4.
These conservation laws allow us to predict the asymptotic thermal equilibrium state.
Specifically, figure 4 shows the projection onto the σz Pauli matrix: according to equation (61),
the sum of types a and c remains constant in time (red curve), but not necessarily the
individual types.

Figure 5 illustrates the exponential convergence to thermal equilibrium.

7.3. Unitary rotation

We transform  in equation (98) by a unitary rotation

a c b d→ ⊗ ⊗  ( )( )U U U U * (99)

with aU , cU and dU equal to the identity matrix, and

b φ φ
φ φ

φ π=
−

=U
cos ( ) sin ( )
sin ( ) cos ( )

with 5. (100)
⎛
⎝⎜

⎞
⎠⎟

This results in

φ φ φ φ

φ φ φ φ
=

−

−


0 0 0 0
1

3
sin ( )

5

8
cos ( )

1

3
cos ( )

5

8
sin ( )

2

15
sin ( )

1

4
cos ( )

2

15
cos ( )

1

4
sin ( )

0 0 0 0

(101)

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

with φ π= 5. The set of conservation laws remains unchanged (‘zero outer frame in 
matrix’, last row in table 1) when represented in the basis α α α( )U W p t U* ( , ) , although the

zero pattern is not evident from equation (101). Asymptotically, α α α( )U W p t U* ( , ) becomes
diagonal for → ∞t , which implies in this case that bW p t( , ) will have non-vanishing off-
diagonal entries for → ∞t , as visualized in figure 6.

7.4. Effect of the conservative collision operator

Typically, the conservative collision operator cons influences the time evolution only slightly.
To illustrate this observation quantitatively, we compare a simulation with the physically
correct = +  diss cons and a simulation using diss only. Figure 7 shows the corresponding
L1 distance between the Wigner states in dependence of time, for the interaction matrices in
equations (96) and (97). One observes oscillations during the time interval [0.04, 0.1]. Note
that the distance has to approach zero since the asymptotic ( → ∞t ) thermal equilibrium state
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Figure 2. Diagonal matrix entries of the → ∞t thermal equilibrium Fermi–Dirac states
corresponding to the initial state in figure 1, for the case of all αβV matrices proportional
to the identity matrix. The off-diagonal entries are zero since the states are represented
in the eigenbasis of ρ t( ), which is conserved in this case. The common inverse
temperature β = 0.8193 and the chemical potentials for each particle type have been
determined from the conservation laws.

Figure 3. Entropy as function of time for the initial state in figure 1 and the β decay
interaction matrices in equations (96) and (97).
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remains the same when omitting cons. In general terms, the trajectories of W(t) are different,
but share the same starting point and asymptotic thermal state.

8. Conclusions and outlook

We have disentangled the delicate relationship between the interaction matrices and the time
evolution dynamics. As first insight, the interaction matrices αβV enter the Boltzmann
equation only via the  matrix defined in equation (38). Additional conservation laws
(table 1) emerge depending on the structure of  . This structure is to be understood modulo
unitary rotations of the form (46). The conserved quantities in turn determine the asymptotic
thermal equilibrium state. Thus, while the particular matrix entries of  influence the time
evolution under the Boltzmann equation, only the structure class of  dictates the asymptotic
state. A complete characterization of all structure classes and corresponding conservation
laws is still open, as well as a geometric picture of the manifold of structure classes.

Figure 4. Projection of the density ρα t( ) onto the σz Pauli matrix, σ ρα ttr [ ( )]z .
According to equation (61), the sum over particle types a and c should be conserved
(red curve), while the individual types are not necessarily constant in time (blue and
green curves for a and c, respectively). The curves have been shifted for visual clarity.

Figure 5. Exponential convergence to thermal equilibrium starting from the initial state
in figure 1 and  matrix in equation (98).
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Appendix A. Derivation of the multi-component Boltzmann equation

In this section, we derive the Boltzmann equation starting from the Hamiltonian in
equation (3). In the spatially homogeneous case, the central quantity is the time-dependent
two-point function

δ〈 ′ 〉 = − ′σ
α

τ
β

στ
αβa p t a p t U p p W p tˆ ( , )* ˆ ( , ) ( ) ( , ), (102)

which for times up to order λ−2 will approximately satisfy a kinetic equation. 〈 〉· denotes the
average over the initial state and operators are taken to be in the Heisenberg picture

= −A t A( ) e eHt Hti i .

Figure 6. The asymptotic → ∞t thermal equilibrium state bW p( )eq for the  matrix in

equation (101). The blue and green (upper) curves show the real diagonal entries, and
the red curve the real part of the off-diagonal ∣ ↑ 〉〈 ↓ ∣ entry, respectively. The
imaginary part of ∣ ↑ 〉〈 ↓ ∣ (magenta curve) is zero in this case. The state has non-
vanishing off-diagonal entries due to the unitary rotation of the b-component in  . The
remaining components αW p( )eq for a c dα ∈ { , , } are diagonal.

Figure 7.Distance betweenW(t) andW t( )diss obtained from a simulation with diss only,
for the β decay interaction matrices in equations (96) and (97).
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A.1. Basic definitions

Analogous to [17], we introduce spin- and field-dependent vector-valued operators

a b c d

∑=
α

σ

σ
α

σ
α

σ
α

∈
∈ ↑ ↓

B p t B p t e( , ) ( , ) f ˆ , (103)f
{ , , , },

{ , }

and

a b c d

∑=
α

σ

σ
α

σ
α

σ
α

∈
∈ ↑ ↓

B p t B p t e( , ) ( , ) g ˆ , (104)g
{ , , , },

{ , }

where σ
αf is the hermitian conjugate of the complex number σ

αf and σ
αê is a unit vector.

σ
αB p t( , ) is a function in momentum and time. Moreover, we introduce the inner product for

spin vectors in two different spin spaces f and g as

∑⊙ =
α β σ τ

σ
α

σ
α

τ
β

τ
βB D B Df g . (105)f g

, , ,

Thus we will always get a kind of matrix-like term. A matrix A acts on spin vectors by

∑∑= =
α β σ τ

τσ
αβ

σ
β

σ
β

σ
βA D A D e A D· f ˆ ( · ) . (106)f

, ,

f

Furthermore, we define the term ⊙α βB Cf g for particle dependent vectors as sum over spins σ
and τ,

∑⊙ =α β

σ τ
σ
α

σ
α

τ
β

τ
β

∈ ↑ ↓

B D B Df g (107)f g
, { , }

and spin interaction matrices

∑=αβ

σ τ
στ
αβ

τ
β

∈ ↑ ↓

V V f (108)f
, { , }

and

∑=αβ

σ τ
σ
α

στ
αβ

∈ ↑ ↓

V Vg . (109)g
, { , }

A.2. Time evolution of the two-point correlation function

Using the introduced notation, we calculate the time evolution of

⊙ = ⊙ + ⊙( ) ( ) ( ) ( ) ( ) ( )
t

a p t a p t a p t a p t a p t a p t
d

d
ˆ , * ˆ , ˆ̇ , * ˆ , ˆ , * ˆ̇ , (110)f 1 g 5 f 1 g 5 f 1 g 5

with

∑=
α τ

τ
α

τ
α

τ
αa p t a p t eˆ ( , )* ˆ ( , )* f ˆf

,

and a p t( , )g 5 respectively. The dot above a quantity a(t) denotes time derivative:

=a t a t( ) ˙ ( )
t

d

d
. The time derivative of a field for a single particle type is given by the

Heisenberg equation of motion
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λ= = +τ
α

τ
α

τ
α−[ ] [ ]

t
a p t H a p t H H a p

d

d
ˆ ( , )* i , ˆ ( , )* i e , ˆ ( )* e .Ht Hti

0 1
i

The calculation of the H0 part results in

ω=[ ]H a p a p p, ˆ ( )* ˆ ( )* · ( ). (111)0 f f

Concerning the H1 part, note that the fields depend on different momenta p1 to p4. Specifically
for particle type a one obtains

a a

b ba d dc c

d da b bc c

∑∑δ

δ δ

δ δ

= − +

+

σ
τ τ

σ σ σ τ σ σ σ σ σ

σ σ σ τ σ σ σ σ σ

[ ]

[

]

( )( )

( )( )

H a p a p H
U

p

a p V a p V a p

a p V a p V a p

, ˆ ( )* 2 ˆ ( )*
1

( )

ˆ ( )* ˆ ( )* ˆ ( )

ˆ ( )* ˆ ( )* ˆ ( ) , (112)

p

p p

p p

1 1 3

1 , , 3 4

1 , , 3 4

1234

1 1 2 2 2 3 3 4 4

1 1 2 2 2 3 3 4 4

where σ σ σ σ σ= { , , , }1 2 3 4 . For the following, we define the set

a b c d a d c b b a d c b c d a

c d a b c b a d d c b a d a b c

=T {( , , , ), ( , , , ), ( , , , ), ( , , , ) ,
( , , , ), ( , , , ), ( , , , ), ( , , , )} (113)

and

a a a

a a a

∑ ∑δ=

×

α

α

α α α α α α α

∈

 [ ]

[ ]

( )

( ) ( ) ( )

h p t
U

p h t

p t V p t p t V

, *, , * ,
1

( ) ( )

, * · · , , * · (114)

p T

f 1 3

4 3 2 f

234

4 4 3 3 2 2 1

as well as

a a a a

a a

∑ ∑δ=

×

α

α α α α

α α α α

∈

 [ ]

[ ]

( ) ( )

( ) ( )

h p t
U

p h t V p t

p t V p t

, , *, ,
1

( ) ( ) · ,

, * · · , . (115)

p T

g 1 3 g 2

3 4

234

1 2 2

3 3 4 4

Using the invariance under interchanges ↔p p1 3, ↔p p2 4 as well as ↔p p p p( , ) ( , )1 3 4 2 ,
we are able to write the time derivatives of the creation and annihilation operators as

ω λ λ= − +  [ ]( ) ( ) ( ) ( )
t
a p t a p t p a p t H t a a a p t

d

d
ˆ , i ˆ , · ( ) 2i ˆ , ( ) i id, ˆ , ˆ, ˆ , (116)* * * * *f 1 f 1 1 f 1 1 f 1

and

ω λ λ= − + −  [ ]( ) ( ) ( ) ( )
t
a p t p a p t H t a p t a a a p t

d

d
ˆ , i ( ) · ˆ , 2i ( ) ˆ , i id, ˆ, ˆ*, ˆ , , (117)g 1 1 g 1 1 g 1 g 1

where id denotes the identity function. In order to simplify calculations, we switch to the
interaction picture and define

a ∫= ω λ−p t a p t( , )* ˆ ( , )* · e ep t s H s
f f

i ( ) i2 d ( )
t

0
1

and

a ∫= λ ω−p t a p t( , ) e e · ˆ ( , ),s H s p t
g

i2 d ( ) i ( )
g

t

0
1
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respectively. Thus the dynamics of a p t( , ) is given by

a a a aλ= ω− [ ]( ) ( )
t

p t p t
d

d
, * i e , *, , * , (118)t

f 1 f
i

1
1234

and

a a a aλ= − ω [ ]( )
t

p t p t
d

d
( , ) i e , , *, , . (119)t

g g
i

1
1234

Moreover

a a a

a a a

∑ ∑δ=

×

α

ω ω

α α α α α α α

−

∈

− α [ ]

[ ]

( )

( ) ( ) ( )

p t
U

p

p t V p t p t V

e , *, , * ,
1

( ) e

, * · · , , * · (120)

t

p T

ti
1 3

i

4 3 2

1234

234

1234

4 4 3 3 2 2 1

and

a a a a

a a

∑ ∑δ=

×

α

ω α α α

α α α α

∈

 [ ]

[ ]

( ) ( )

( ) ( )

p t
U

p V p t

p t V p t

e , , *, ,
1

( ) · ,

, * · · , . (121)

t

p T

i
1 3 2

3 4

1234

234

1 2 2

3 3 4 4

A.3. Expansion in powers of λ

Iteration of (118) and (119) twice up to second order leads to

a a a a a∫λ= + ω− [ ]( ) ( )p t p s p s, * , 0 * i d e , *, , * ( , ) (122)
t

s
f 1 f 1

0
f

i
1

1234

and carrying out the iteration up to order λ2 (Duhamel expansion)

a

a a

∫
∫
∫

λ

λ

λ

λ

λ

λ λ λ

=

−

+

−

+

= + +

ω

ω ω

ω ω

ω ω

−

− −

−

− −



 

 

 



( )

( )

[ ]

[ [ ] ]

[ [ ] ]

[ [ ]]

( ) ( )
t

p t a a a p

s a a a a a p s

s a a a a a p s

s a a a a a p s

p t p t

d

d
, * i e , ˆ*, ˆ, ˆ* , 0

d e , e , ˆ*, ˆ, ˆ* , ˆ, ˆ* ( , )

d e , ˆ*, e , ˆ, ˆ*, ˆ , ˆ* ( , )

d e , ˆ*, ˆ, e , ˆ*, ˆ, ˆ* ( , )

( , )* ( , )* , (123)

t

t
t s

t
t s

t
t s

f 1
i

1

2

0
f

i i
1

2

0
f

i i
1

2

0
f

i i
1

3

f
(1) 2

f
(2) 3

1234

1234 4678

1234 3678

1234 2678

where a p t( , )i
f
( ) refers to the terms of order λi.

Note that the first term, a p t( , )*f
(0) , reflects the zero point of the integration and therefore

reads

a =p a p( , 0)* ˆ ( )*. (124)f
(0)

f
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Furthermore, the following identity holds

a a⊙ = ⊙( ) ( ) ( ) ( )p t p t a p t a p t, * , ˆ , * ˆ , . (125)f 1 g 5 f 1 g 5

Iterating further gives

a a

a a∑ ∑

∑

λ

δ λ

⊙ = ⊙

+ ⊙

= −

=

∞

=

−

=

∞

( ) ( ) ( ) ( )

( ) ( )

( )

a p t a p t p p

p t p t

p p W p t

ˆ , * ˆ , , 0 , 0

, * ,

( ) f, , · g , (126)

n

n

m

n
m n m

n

n n

f 1 g 5 f 1 g 5

1 0
f
( )

1 g
( )

5

1 5
0

( )
1

where W p t( , )n( )
1 is a summation of the relevant terms for λn.

A.3.1. First-order terms. Starting with the linear λ terms, the first thing to do is to calculate
a p t( , )f

(1)
1 exactly. Therefore, aα p t( , ) and aα p t( , )* in (115) and (114) have to be replaced by

αa pˆ ( ) and αa pˆ ( )*. The result is

a a a a

δ −

= ⊙ + ⊙

= ⊙

− ⊙

ω

ω

−


[ ]

[ ]

( )

( ) ( ) ( ) ( )

( )

( )

p p W p t

p t p p p t

a a a p a p

a p a a a p

( ) f, , · g

, * , 0 , 0 * ,

i e , ˆ*, ˆ, ˆ* , 0 * ˆ ( )

( )* e , ˆ, ˆ*, ˆ , 0 . (127)

t

t

1 5
(1)

1

f
()

1 g
(0)

5 f
(0)

1 g
(1)

5

f
i

1 g 5

f 1 g
i

5

1234

1234

Using equation (114) on the first term we get

∫ ∑ ∑ ∑δ

⊙

=

× ⊙

α

ω

β

ω α α α α

α α α β

−

∈

− α

 [ ]

[ ]

[ ]

( )

( )

a a a p a p

s
U

p a p V a p

a p V a p

e , ˆ*, ˆ, ˆ* , 0 * ˆ ( )

i d
1

( ) e ˆ ( )* · · ˆ ( )

ˆ ( )* · ˆ ( ) . (128)

t

t

p T

s

f
i

1 g 5

0 3
i

4 3

2 f g 5

1234

234

1234 4 4 3 3

2 2 1

Each summand in α ∈ T and β can be represented by a graph, see [17].
Now, to form the average value of equation (127) via equation (102), we have to perform

Wick contractions. If we are averaging over an initial quasi-free state we can partition this
average into a product of averages containing only two operators by using the following rule

=
⩽ ⩽

( )a a a a K i jˆ ˆ · · · ˆ ˆ det , , (129)i j i j k l k l n
* *

1 ,n n1 1

⎡⎣ ⎤⎦
where

=
⩽

− >
( )K i j

a a k l

a a k l
,

ˆ ˆ , if ,

ˆ ˆ , if .
(130)k l

i j

j i

*

*

k l

l k

⎧
⎨⎪
⎩⎪
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One obtains, for example

d c b

d c d

c b b

d c b

d c b

=
−

=

+

=

σ σ σ τ
β

σ σ σ τ
β

σ σ σ τ
β

σ σ σ τ
β

σ τ
β

σ σ

a p a p a p a p

a p a p a p a p

a p a p a p a p

a p a p a p a p

a p a p a p a p

ˆ ( )*ˆ ( ) ˆ ( )*ˆ ( )

det
ˆ ( )*ˆ ( ) ˆ ( )*ˆ ( )

ˆ ( ) ˆ ( )* ˆ ( )*ˆ ( )

ˆ ( )*ˆ ( ) ˆ ( )*ˆ ( )

ˆ ( )*ˆ ( ) ˆ ( ) ˆ ( )*

0 (131)

4 3 2 5

4 3 4 5

3 2 2 5

4 3 2 5

4 5 3 2

4 3 2

4 3 4

3 2 2

4 3 2

4 3 2

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

for all a b c dβ ∈ { , , , } since the average value over a pair of annihilator and creator of
different particle types is

′ = ′ =σ
α

τ
β

τ
β

σ
αa p a p a p a pˆ ( )*ˆ ( ) ˆ ( ) ˆ ( )* 0. (132)

Similarly all λ terms of order one are zero, and therefore equation (126) reduces to

∫
∫λ δ λ

⊙

= − +  ( )

s
s

a p s a p s

p p s W p s

d
d

d
ˆ ( , )* ˆ ( , )

( ) d f, ( , ) · g . (133)

t

t
0

f 1 g 5

2
1 5

0

(2)
1

3

A.3.2. Second-order terms. The full δ λ− 〈 〉p p W p t( ) f, ( , ) · g1 5
2 (2)

1 reads

a a a a

a a

∫

δ λ−

= ⊙ + ⊙

+ ⊙ + ⊙

( )

( ) ( )

( ) ( )

p p W p t

s p t p s p s p t

p t a p a p p t

( ) f, , · g

d , * ( , ) ( , )* ,

, * ˆ ( ) ˆ ( )* , . (134)

t

1 5
2 (2)

1

0
f
(1)

1 g
(1)

5 f
(1)

1 g
(1)

5

f
(2)

1 g 5 f 1 g
(2)

5

Explicitly, the first (1)(1) term is given by

a a⊙ = ⊙ω ω− ( ) ( )p t p s a a a p t a a a p s, * ( , ) e , ˆ*, ˆ, ˆ* , e , ˆ, ˆ*, ˆ ( , ) (135)t s
f
(1)

1 g
(1)

5 f
i

1 g
i

5
1234 1234⎡

⎣
⎤
⎦

⎡
⎣

⎤
⎦

and the second (1)(1) term results from interchanging ↔s t. We get

a a ∑ ∑δ δ⊙ =

⊙

α β

ω ω

α α α α α α α

β β β β β β β

∈

− α β

( )( )
( )

( ) ( )

( )

( )p t p s
U

p p

a p V a p a p V

V a p a p V a p

, * ( , )
1

e e

ˆ ( )* · · ˆ ( ) ˆ ( )* ·

· ˆ ( ) ˆ ( )* · · ˆ ( ) . (136)

p p T

t s
f
(1)

1 g
(1)

5 6
,

1234 5678
,

i i

4 3 2 f

g 6 7 8

234 678

1234 5678

4 4 3 3 2 2 1

1 2 2 3 3 4 4

For what follows, we assume that the initial state 〈 〉· is quasifree, gauge invariant and

invariant under translations. Then the two-point function 〈 ′ 〉σ
α

τ
βa p a p( )* ( ) is determined

by
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δ δ′ = − ′σ
α

τ
β

αβ στ
αa p a p U p p W p( )* ( ) ( ) ( ). (137)

After taking the average 〈 〉· , the summand on the right of equation (136) with
aβ α= =1 1 is given by

a ab b ba a cd d dc c

a ad d da a cb b bc c

a ab b bc c cd d da a

a ad d dc c cb b ba a

abcd abcd∑δ δ

+

+

+

ω ω−( ) ( )
U

p p

V W V V W V W

V W V V W V W

V W V W V W V

V W V W V W V

1
e e

f , · · · g tr · · · ˜

f , · · · g tr · · · ˜

f , · · · ˜ · · · · g

f , · · · ˜ · · · · g , (138)

p

t s
3 1234 5234

i i

2 4 3

4 2 3

2 3 4

4 3 2

234

1234 5234

⎡⎣ ⎡⎣ ⎤⎦
⎡⎣ ⎤⎦

⎤⎦
where af and ag are defined as

a a a a a a= =↑ ↓ ↑ ↓( ) ( )f f , f , g g , g . (139)
T T

The b b( , ), c c( , ), and d d( , ) components are analogous. We obtain the b b( , ) component by
interchanging a b↔ , c d↔ , the c c( , ) component by interchanging a c↔ , b d↔ and the
d d( , ) component by interchanging a d↔ , b c↔ .

We collect the components of the Wigner states in a 8 × 8 block-diagonal matrix

a b c d=W W W W Wdiag , , , , (140)1 1 1 1 1
⎡⎣ ⎤⎦

where each entry stands for a 2 × 2-matrix. The interaction potential is summarized by the
matrices =V and xV defined in equations (36) and (37), respectively. For the following, define

= =αβ βα α αβ β αβ( )G V W V Wtr · · · ˜ *. (141)ij j i ij
⎡⎣ ⎤⎦

This definition is used in

= ⊗αβγδ δγ γδ βα αβ
× G G G Gdiag , , , (142)ij ij ij ij ij 2 2

⎡⎣ ⎤⎦
and

= ⊗αβγδ δγ αβ βα γδ
× G G G Gˆ diag , , , , (143)ij ij ij ij ij 2 2

⎡⎣ ⎤⎦
where the components two and four are exchanged. With these definitions

abcd adcb x x

x x

x x

a a ∑δ δ⊙ =

× +

+
+

ω ω− = =

= =

= =

 

( ) ( ) ( )

(

)

p t p s
U

p p

V W V V W V

V W V W V W V

V W V W V W V

, * ( , )
1

f, e · e · · · · ˆ · · ·

· · · ˜ · · ·

· · · ˜ · · · · g . (144)

p

t s

f
(1)

1 g
(1)

5 3 1234 5234

i i
34 2 32 4

4 3 2

2 3 4

234

1234 5234
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Furthermore, we define

abcd adcb x x

x x

x x

= +
+
+

= =

= =

= =


 

W

V W V V W V

V W V W V W V

V W V W V W V

[ ]

· · · ˆ · · ·

· · · ˜ · · ·

· · · ˜ · · · . (145)

234

34 2 32 4

4 3 2

2 3 4

By an analogous calculation

a a ∑ δ δ=

× ω ω− 

( ) ( )( )p s p t
U

p p

W

( , )* · ,
1

f, e · e · [ ] · g . (146)

p p p

s t

f
(1)

1 g
(1)

5 3
, ,

1234 5234

i i
234

2 3 4

1234 5234

To further simplify the expression, we rearrange the delta functions δ δ =p p( ) ( )
1234 5234

δ δ−p p p( ) ( )1 5 1234
and p5 can be replaced by p1, such that the exponents of the exponential

function change signs.
The (2)(0) term is given by

a ∫⊙ = −

−

+ ⊙

ω ω

ω ω

ω ω

− −

−

− −

 
 
 

( ) [ [ ] ]

[ [ ] ]

[ [ ] ]

(

)

p t a p s a a a a a p s

a a a a a p s

a a a a a p s a p

, * ˆ ( ) d e , e , ˆ*, ˆ, ˆ* *, ˆ, ˆ* ( , )*

e , ˆ*, e , ˆ, ˆ*, ˆ , ˆ* ( , )*

e , ˆ*, ˆ, e , ˆ*, ˆ, ˆ* * ( , )* ˆ ( ). (147)

t
t s

t s

t s

f
(2)

1 g 5
0

f
i , i ,

1

f
i , i ,

1

f
i , i ,

1 g 5

1234 4678

1234 3678

1234 2678

Thus we get

a

∫

∑

∑ ∑

δ⊙ = −

× − + ⊙
αβ

ω β

∈

− α

( )( )p t a p
U

p

s X Y Z a p

, * ˆ ( )
1

d e ( ) ˆ ( ) (148)

p p

T

t
t

f
(2)

1 g 5 6
,

1234

0

i
g 5

234 678

1234

with

∑ δ=
α β β β

ω

α α α α β β β β

β β α α α

∈

− α β β β

( )( )
( )

( )
( )

X p

a p V a p a p V a p

a p V V

e

ˆ ( )* · · ˆ ( ) ˆ ( )* · · ˆ ( )

ˆ ( )* · (149)

T

s

, ,
2678

i

4 3 8 7

6 f

2 2 3 4

2678
2 2 3 4

4 4 3 3 4 4 3 3

2 2 2 2 1

and

∑ δ=
α β β β

ω
σ
α α α α β β

β β β β α α α

∈

α β β β

α( )

( )

( )
( )

Y p a p V V a p

a p V a p a p V

e ˆ ( )* · · · ˆ ( )

ˆ ( )* · · ˆ ( ) ˆ ( )* · (150)

T

s

, ,
3678

i
4 6

7 8 2 f

3 2 3 4

3678
3 2 3 4

4
4 4 3 3 2 2

3 3 4 4 2 2 1
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and

∑ δ=
α β β β

ω β β β β

β β α α α α α α α

∈

− α β β β ( )

( )

( )
( )

Z p a p V a p

a p V V a p a p V

e ˆ ( )* · · ˆ ( )

ˆ ( )* · · · ˆ ( ) · ˆ ( )* . (151)

T

s

, ,
4678

i
8 7

6 3 2 f

4 2 3 4

4678
4 2 3 4

4 4 3 3

2 2 4 4 3 3 2 2 1

Only terms with complementary creation and annihilation operators of the same particle type
are non-zero when taking the average. For the following, we introduce

= =αβ βα α αβ αβ( )F V W Vtr · · * (152)i i i
⎡⎣ ⎤⎦

which is summarized by the block-diagonal matrices

= ⊗αβγδ δγ γδ βα αβ
× F F F Fdiag , , , (153)i i i i i 2 2

⎡⎣ ⎤⎦
and

= ⊗αβγδ δγ αβ βα γδ
× F F F Fˆ diag , , , . (154)i i i i i 2 2

⎡⎣ ⎤⎦
Note that the second and fourth entry on the right in (154) are exchanged as compared to
(153). As heuristic motivation, the calculation for the abcdH1 -part in the Hamiltonian is
analogous to the adcbH1 -part with particles b and d exchanged. In summary, one obtains

a

∫

∑δ δ⊙ = −

× ω− − 

( ) ( )p t a p p p
U

p

s W

, * ˆ ( ) ( )
1

d f, e · [ ] · g (155)

p

t
t s

f
(2)

1 g 5 1 5 3 1234

0

i ( )
1234

234

1234

with the definition

abcd adcb x x

x x

x x

abcd adcb x x

x x

x x

badc dabc x x

x x

x x

= − +
+
+

+ +

+
+

− +

+
+

= =

= =

= =

= =

= =

= =

= =

= =

= =

  

 

 

(

(
)

)

(

)

W V V W V V W

V V W V W V W

V V W V W V W

V W V W V W V W

V W V V W V W

V W V V W V W

V W V W V W V W

V W V W V V W

V W V W V V W

[ ] · · · ˆ · · ·

· · ˜ · · · ·

· · ˜ · · · ·

· · ˜ · · ˆ · · ˜ · ·

· ˜ · · · · ·

· ˜ · · · · ·

· · ˜ · · ˆ · · ˜ · ·

· ˜ · · · · ·

· ˜ · · · · · . (156)

1234 34 5 32 5

3 4 5

3 2 5

4 2 5 2 4 5

2 4 5

4 2 5

3 2 5 3 4 5

2 3 5

4 3 5

For the (0)(2) term of equation (134) we get analogously

a ∫∑δ δ⊙ = − ω − ( ) ( )a p p t p p
U

p s Wˆ ( )* , ( )
1

d f, e · [ ] . (157)
p

s
t s

f 1 g
(2)

5 1 5 3 1234 0

i ( )
1234
*

234

5234
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A.4. The limit λ→0, t ¼  λ−2
� �

We take the infinite volume limit → ∞ℓ of d= = −U U ℓ ℓ[ , ]ℓ and subsequently the kinetic
limit λ → 0 together with rescaling λ→ −t t2 . Defining

∫ ∫ δ= ′ ′ +

+ ′ +

ω

ω

−

− −

 
 

(( ) ( )
)

( )
( )

H p t s s p W W

W W

, d d e · [ ] [ ]

e · [ ] [ ] , (158)

t s
s s

s s

1234
0 0 1234

i ( )
234 1234

*

i ( )
234 1234

1234

1234

we get

∫ ∑

∑

δ

δ

−

= ⊙

= −

=

−

∈

( )

( )

p p W p t

s
s

a p s a p s

p p
U

H p t

( ) f, , · g

d
d

d
ˆ ( , ) ˆ ( , )

( )
1

f, , · g . (159)

t

m

m m

ℓ p U

1 5
(2)

1

0
0

2

f
*

1
( )

g 5
(2 )

1 5 3
ˆ

1234

234
3

In the limit → ∞ℓ we obtain the Riemann integral

∫∑
π

=
→∞ ∈ π 

U
f p p f plim

1
( )

1

2
d ( ). (160)

ℓ ℓ p ℓ
d

d

Thus

∫∑
π

= =
→∞ ∈ π 


( ) ( ) ( )W p t

U
H p t p H p t, lim

1
,

1

(2 )
d , . (161)

ℓ ℓ p

(2)
1 3 1234 3 234 1234

ℓ
d

d

234
3

3

The collision operator is determined by taking at second order the limit λ → 0 and
simultaneously long times λ− t2 with t of order 1. More explicitly

λ λ=
λ→

− ( )t W p W p t[ ]( ) lim , . (162)
0

2 (2) 2

To evaluate the limit, we use

∫ ∫
∫

λ

ω π δ ω

′

= = ± +

′
λ

λ
ω

ω

→
± −

∞
± −

−

( )( )

s s

t s t

lim d d e

d e i ( ) , (163)

( )
t s

s s

s

0

2

0 0

i

0

i
1234

1
1234

2

1234

1234

where  denotes the principal value integral. Thus

∫

∫

λ λ

π
π

δ δ ω

π
δ ω

= + +

+ −

λ→
−

−

  

  




( )
( )

( ) ( )

W p t

t
p p W W W

t
p p W W

lim ,

(2 )
d ( ) ( ) · 2 [ ] [ ] [ ]

i

(2 )
d ( ) · [ ] [ ] , (164)

0

2 (2)
1

2

3 234 1234 234 1234
* 1234

3 234 1234
1

1234
* 1234

d

d

3

3

where ω − ( )1234
1 must be considered as principal value applied to every component and

similarly δ ω( )1234 as a matrix of delta functions

J. Phys. A: Math. Theor. 48 (2015) 095204 M L R Fürst et al

31



abcd abcd abcd abcd
ω

ω ω ω ω
=

− −
⊗−

×     ( ) diag
1

,
1

,
1

,
1

(165)1234
1

1234 2143 3412 4321
2 2

⎡
⎣
⎢⎢

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎤
⎦
⎥⎥

and

abcd abcd abcd abcdδ ω δ ω δ ω δ ω δ ω= − − ⊗ ×( ) ( ) ( ) ( )( ) diag , , , . (166)1234 1234 2143 3412 4321 2 2
⎡⎣ ⎤⎦

We obtain

∂
∂

= + ( ) ( ) ( )
t
W p t W p t W p t, [ ] , [ ] , (167)1 diss 1 cons 1

with

∫π
π

δ δ ω= + +   


( )( )W p t p p W W W[ ] ,
(2 )

d ( ) ( ) 2 [ ] [ ] [ ] (168)diss 1 3 234 1234 234 1234 1234
*

d3

and

∫
π

δ ω= −−   


( )( )( )W p t p p W W[ ] ,
i

(2 )
d ( ) [ ] [ ] . (169)cons 1 3 234 1234

1
1234
* 1234

d3

Note that without spin interaction the conservative part would vanish since  and * cancel
out. Finally, algebraic reformulation and using the symmetry properties leads to

+ = + +    W W W W W[ ] [ ] 2 [ ] [ ] [ ] (170)quad 1234 tr 1234 234 1234 1234
*

and

= − [ ]h W W W W[ ] , [ ] [ ] . (171)eff 234 1 1234
* 1234

Appendix B. Initial Wigner state W p;0ð Þ

For reproducibility, we record the analytical formula of the initial Wigner state W p( , 0) used
in the simulations (figure 1). We specify the state in dependence of the energy ε, which is
related to the momentum via the dispersion relation ε ω= α p( ) for particle type α, see
equation (11).

The a-component is

a

a

a

ε ε

ε

ε ε ε ε

= +

=

= − + + +

ε

ε ε ε

ε ε

↑↑
−

↑↓
− − − −

↓↓
− ( )

( )

( )( )

W

W

W

( , 0) e ,

( , 0) 42 e ,

( , 0) erfc ( 6)e atan( 1) 2 erf 2 sin (3 ) , (172)

5
2

2 2 1
4

2

2i( 1 3) ( 15 4) 2

1
6

2 3
2

1
8

1
2

1
2

2

the b-component reads

b

b

b

ε ε Γ ε

ε ζ ε

ε

= + + +

= +

=

ε

ε

↑↑
−

↑↓
−

↓↓
− +

( )( )
W

W

W

( , 0) (2 sin (2 ))(2 (1 )) ,

( , 0) 1 e ,

( , 0) e , (173)

2
3

1

1
2

i
2

2

(1 2 3)

J. Phys. A: Math. Theor. 48 (2015) 095204 M L R Fürst et al

32



the c-component

c

c

c

ε ε ε

ε ε ε ε ε ε

ε ε ε ε

= + +

= + − − − + +

= − + +

ε

ε

ε

↑↑

↑↓
−

↓↓
− −

( )( )
( )

( )

( )

( )

W

W

W

( , 0) erfc ,

( , 0) e (1 erf ( 2)) erfc ( 6) i 4(1 i) sin ( ) ,

( , 0) erfc ( 6) e 1 sin ( ) 3 , (174)

2
3 2

2 4
5

3
5

1
6

2

1
2

3 2 2
5

2

2 2 3
5

1

and the d-component

d

d

d

ε ε ε

ε ε ε ε ε

ε ε

= − +

= − − +

= −

π
ε

π ε

↑↑
−

↑↓
−

↓↓

( )
( )

W

W

W

( , 0) erfc ( 7)e Si 6 ,

( , 0) erfc ( 6)e 15 18 3 ,

( , 0) Ai( 1). (175)

3
4

2 1
2

1
24

i 6 7 3 2 2

Here ζ s( ) is the Riemann zeta function, zerf ( ) the error function, zerfc ( ) the complementary
error function, zSi( ) the sine integral function and xAi( ) the Airy function.

The off-diagonal entries εα
↓↑W ( , 0) are respective complex conjugates of εα

↑↓W ( , 0) since
εW ( , 0) is Hermitian.
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