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Our goal is to compute the Coulomb overlap integral of two Gaussians centered at p⃗, q⃗ ∈ R3 (p⃗ ̸= q⃗), respectively,
with exponents α, β > 0:

Cα,β
p⃗,q⃗

:=
(αβ)

3
2

π3

∫
R3

∫
R3

e−α∥r⃗1−p⃗∥2 1

∥r⃗1 − r⃗2∥
e−β∥r⃗2−q⃗∥2

d3r1 d
3r2. (1)

The final result will be
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where erf(·) is the error function. In the limit of delta-function like Gaussians, one obtains limα,β→∞ Cα,β
p⃗,q⃗ = 1

∥p⃗−q⃗∥ ,

as expected.
We will derive Eq. (2) in two ways.

Factorization of the inverse distance

To factorize the integration into Cartesian directions, we use the well-known trick of expressing 1
r (for any r > 0)

as
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∫ ∞
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e−r2t2 dt. (3)

Using this representation in Eq. (1) and interchanging integration orders leads to
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Note that the exponents are now quadratic functions of r⃗1 and r⃗2 and factorize with respect to Cartesian directions.

Due to translation and rotation symmetries, we notice that Cα,β
p⃗,q⃗ depends on p⃗ and q⃗ only via ℓ := ∥p⃗− q⃗∥. Without

loss of generality, we can assume that p⃗ = (0, 0, ℓ) and q⃗ = (0, 0, 0). Denoting the Cartesian coordinates of the
integration variables as r⃗1 = (x1, y1, z1) and r⃗2 = (x2, y2, z2), respectively, we can express
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Since the integrand is symmetric with respect to t → −t, we can equivalently integrate over [0,∞) and multiply the
result by 2. Next, we substitute
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αβ + t2(α+ β)
. (6)

Performing the integration variable substitution results in
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which agrees with Eq. (2).
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Boys’ approach

The following derivation follows the historic paper by S. F. Boys [1]. We first evaluate the r⃗2 integral:
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Shifting the origin of the coordinate system for integration to q⃗ leads to
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Next, we partition the integral into the ball with radius ∥r⃗1 − q⃗∥ and its complement:
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The first integral on the right describes the Coulomb potential at r⃗1 − q⃗ generated by a spherically symmetric charge
distribution. Since the point r⃗1 − q⃗ is at the boundary of this charge distribution, the distribution acts like a point
charge at the origin (with the same overall charge). Expressed in spherical coordinates, we obtain∫
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For the third equal sign we have used integration by parts together with e−βs2 s = d
ds (−

1
2β e−βs2). The second integral

on the right in Eq. (10) corresponds to the potential inside a hollow sphere. This potential is constant, and equal to
the value at the origin. One obtains∫
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Summing Eqs. (11) and (12) leads to
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Re-inserting this result into Eq. (1) gives:
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We now switch to spherical coordinates (r, θ, φ) for r⃗, such that the z-axis points in the direction of p⃗ − q⃗. The φ
integral contributes 2π (since the integrand does not depend on φ). Together with the Jacobi determinant r2 sin(θ)
due to the switch to spherical coordinates, one obtains
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The integral with respect to θ can be evaluated directly, leading to
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Thus, Cα,β
p⃗,q⃗ depends on p⃗ and q⃗ only via ℓ := ∥p⃗− q⃗∥.

As in Ref. [1], we now use a trick to evaluate the nested integral
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Namely, we can use integration by parts by considering its derivative with respect to ℓ:
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We also note that C̃α,β(0) = 0 due to the anti-symmetry of the integrand upon r → −r for ℓ = 0. Integrating Eq. (18)
with respect to ℓ leads to
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( √
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Inserting this relation into Eq. (16), we arrive at the final result
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