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with exponents «, f > 0:

p;

Our goal is to compute the Coulomb overlap integral of two Gaussians centered at p, ¢ € R3 (§ # §), respectively,
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The final result will be
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as expected.
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where erf(-) is the error function. In the limit of delta-function like Gaussians, one obtains lim, g, Cg ’q?
We will derive Eq. in two ways.
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Factorization of the inverse distance
as

1

To factorize the integration into Cartesian directions, we use the well-known trick of expressing % (for any r > 0)
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Using this representation in Eq. and interchanging integration orders leads to
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Note that the exponents are now quadratic functions of #; and 75 and factorize with respect to Cartesian directions.
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Due to translation and rotation symmetries, we notice that Cg ’; depends on p'and ¢ only via £ == ||p— q]|. Without

loss of generality, we can assume that p’ = (0,0,¢) and ¢ = (0,0,0). Denoting the Cartesian coordinates of the
integration variables as ¥ = (21,y1,21) and ¥ = (z2, Y2, 22), respectively, we can express
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result by 2. Next, we substitute

Since the integrand is symmetric with respect to ¢ — —t, we can equivalently integrate over [0, c0) and multiply the
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Performing the integration variable substitution results in
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which agrees with Eq. .




Boys’ approach

The following derivation follows the historic paper by S. F. Boys [I]. We first evaluate the 7 integral:
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Shifting the origin of the coordinate system for integration to ¢ leads to
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Next, we partition the integral into the ball with radius || — ]| and its complement:
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The first integral on the right describes the Coulomb potential at 7} — ¢ generated by a spherically symmetric charge
distribution. Since the point 7; — ¢’ is at the boundary of this charge distribution, the distribution acts like a point
charge at the origin (with the same overall charge). Expressed in spherical coordinates, we obtain
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For the third equal sign we have used integration by parts together with e B s = L= 2ﬁ e85 ). The second integral

on the right in Eq. (10) corresponds to the potential inside a hollow sphere. This potential is constant, and equal to
the value at the origin. One obtains
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Summing Egs. and leads to
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Re-inserting this result into Eq. gives:
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We now switch to spherical coordinates (r, 6, ) for 7, such that the z-axis points in the direction of 5 — ¢. The ¢
integral contributes 27 (since the integrand does not depend on ¢). Together with the Jacobi determinant r2 sin(f)
due to the switch to spherical coordinates, one obtains
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The integral with respect to 6 can be evaluated directly, leading to

cob 1 2\/ / e (r—2rlF-allr-a) _ a(r2+2rllﬁf<ﬂ\+\lﬁfq“l\2))/T o8 dsdr

Pl = gl 0

_ 1 2F/ efa(rf\lﬁf«i‘l\f/Tefﬁszdsdr.
pP—dl 7 J_ 0

d

1
151l

oIS 3 — 4 /N o5 g s — %” eAlIR=al®  (19)
u

71—{||

(14)

(16)




Thus, C’g’q’? depends on p'and ¢ only via £ := ||p'— q]|.
As in Ref. [1], we now use a trick to evaluate the nested integral
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Namely, we can use integration by parts by considering its derivative with respect to ¢:
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We also note that C*# (0) = 0 due to the anti-symmetry of the integrand upon r — —r for £ = 0. Integrating Eq.
with respect to £ leads to
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Inserting this relation into Eq. , we arrive at the final result
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